Log in

Constitutive modeling and analysis on high-temperature flow behavior of 25 steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The constitutive relationship is the basis for studying the material processing technology and controlling the quality of products. Data and models of the plastic flow behavior of materials are often required during the manufacturing process. Therefore, establishing constitutive models with high precision and generalization and enriching material database is of great significance for optimizing processing technology and product quality of the material. Based on the Gleeble thermal compression test results, the essential relationship of 25 steel between the flow stress and thermal–mechanical state variables, such as temperature, strain rate, and strain, is quantitatively discussed for the first time. Combined with the Zener–Hollomon parameter and considering the influence of strain compensation, the constitutive model of 25 steel is built by the hyperbolic-sine equation over the full strain range. In the modeling process, the influence of strain on material constants is characterized by polynomial fitting. The selection basis of polynomial order is discussed in-depth, and the inconsistency between calculation accuracy and fitting effect is clarified. Finally, the accuracy of the model is analyzed, and the generalization and applicability are discussed. It is proved that the developed model can accurately predict the flow behavior of materials in the full strain range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.W. Lei, G.Q. Chen, K.H. Liu, X. Wang, X.M. Jiang, J.L. Pan, Q.Y. Shi, Metals 9 (2019) 42.

    Article  Google Scholar 

  2. C.B. Huang, The research on extrusion process of large diameter steel pipe of ferrous metals, Tsinghua University, Bei**g, China, 2015.

    Google Scholar 

  3. N. Thakur, P. Kumar, R.S. Bharj, Materialtoday Proceed. 5 (2018) 27884–27892.

    Article  Google Scholar 

  4. N.E. Karkalos, A.P. Markopoulos, Proced. Manuf. 22 (2018) 107–113.

    Article  Google Scholar 

  5. Y.M. Li, H.C. Ji, Z.M. Cai, X.F. Tang, Y.G. Li, J.P. Liu, Materials 12 (2019) 1893.

    Article  Google Scholar 

  6. D.N. Zhang, Q.Q. Shangguan, C.J. **e, F. Liu, J. Alloy. Compd. 619 (2015) 186–194.

    Article  Google Scholar 

  7. Y.C. Lin, X.M. Chen, Mater. Des. 32 (2011) 1733–1759.

    Article  Google Scholar 

  8. E.X. Pu, H. Feng, M. Liu, W.J. Zheng, H. Dong, Z.G. Song, J. Iron Steel Res. Int. 23 (2016) 178–184.

    Article  Google Scholar 

  9. P.T. Liu, Q.X. Huang, L.F. Ma, T. Wang, J. Iron Steel Res. Int. 25 (2018) 1054–1061.

    Article  Google Scholar 

  10. Y. Han, S. Yan, Y. Sun, H. Chen, Metals 7 (2017) 114.

    Article  Google Scholar 

  11. A. Rudra, M. Ashiq, S. Das, R. Dasgupta, Metall. Mater. Trans. B 50 (2019) 1060–1076.

    Article  Google Scholar 

  12. M.S. Arun, U. Chakkingal, Mater. Sci. Eng. A 754 (2019) 659–673.

    Article  Google Scholar 

  13. J. Li, J. Liu, Metals 9 (2019) 212.

    Article  Google Scholar 

  14. Z.J. Tao, H. Yang, H. Li, J. Ma, P.F. Gao, Rare Metals 35 (2016) 162–171.

    Article  Google Scholar 

  15. J.H. Hollomon, C. Zener, J. Appl. Phys. 17 (1946) 82–90.

    Article  Google Scholar 

  16. K. Li, Q.L. Pan, R.S. Li, S.H. Liu, Z.Q. Huang, X. He, J. Mater. Eng. Perform. 28 (2019) 981–994.

    Article  Google Scholar 

  17. S. Long, Y.F. **a, P. Wang, Y.T. Zhou, F.J. Gongye, J. Zhou, J.S. Zhang, M.L. Cui, J. Alloy. Compd. 796 (2019) 65–76.

    Article  Google Scholar 

  18. Z.M. Cai, H.C. Ji, W.C. Pei, X.F. Tang, X.M. Huang, J.P. Liu, Vacuum 165 (2019) 324–336.

    Article  Google Scholar 

  19. Y.C. Lin, M.S. Chen, J. Zhong, Comput. Mater. Sci. 42 (2008) 470–477.

    Article  Google Scholar 

  20. D. Samantaray, S. Mandal, A.K. Bhaduri, Mater. Des. 31 (2010) 981–984.

    Article  Google Scholar 

  21. G.W. Ge, L.Q. Zhang, J.J. **n, J.P. Lin, M. Aindow, L.C. Zhang, Sci. Rep. 8 (2018) 5453.

    Article  Google Scholar 

  22. S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, K.V. Kasiviswannathan, Mater. Sci. Eng. A 500 (2009) 114–121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-dong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Yuan, Cl., Wu, Rd. et al. Constitutive modeling and analysis on high-temperature flow behavior of 25 steel. J. Iron Steel Res. Int. 28, 76–85 (2021). https://doi.org/10.1007/s42243-020-00445-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00445-6

Keywords

Navigation