Log in

Candidate resistance genes selection and transcriptome analysis for the early responses to Plasmopara viticola infection in grape cultivars

  • Original Paper
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Grape downy mildew (Plasmopara viticola) is one of the most destructive diseases of grapevine worldwide. In order to better understand the cellular processes involved in resistance to downy mildew, leaves of Vitis vinifera cv. ‘Centennial Seedless’ (susceptible) and Vitis labrusca×Vitis riparia cv. ‘Beta’ (resistant) were inoculated with Plasmopara viticola, and were used in the Illumina HiSeq™2000 platform for deep transcriptome sequencing. We performed transcriptome analysis and identified a total of 1091 differentially expressed genes (DEGs) in the disease-resistant cultivar and 849 in the susceptible cultivar. To increase understanding of the DEGs, the datasets were analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genome (KEGG) database. Most of them were found to be associated with plant–pathogen interaction, flavonoid synthesis, phenylpropanoid synthesis metabolism and phytohormone signal transduction. Moreover, transcription factors ERF, MYB, WRKY, and bHLH associated with disease resistance were screened. A total of 196 genes were identified as the candidate resistant genes. The expression of 18 differentially expressed genes was detected by RT-qPCR. Finally, the pattern of differentially expressed genes was consistent with the result of transcriptome sequencing. The present study identified several candidate resistance genes and signal transduction pathways that may contribute to downy mildew resistance in grapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allègre M, Héloir MC, Trouvelot S, Daire X, Pugin A, Wendehenne D, Adrian M (2009) Are grapevine stomata involved in the elicitor-induced protection against downy mildew? Mol Plant-Microbe Interact 22:977–986

    PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ammar A., Elouedi Z., Lingras P (2012) RPKM: the rough possibilistic K-modes. Foundations of intelligent systems: 20th international symposium 81–86

  • Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Gene 25(1):25–29

    CAS  Google Scholar 

  • Bellin D, Peressotti E, Merdinoglu D et al (2009) Resistance to Plasmopara viticola in grapevine 'Bianca' is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet 120:163–176

    PubMed  Google Scholar 

  • Bisson L, Waterhouse A, Ebeler S, Walker M, Lapsley J (2002) The present and future of the international wine industry. Nature 418:696–699

    CAS  PubMed  Google Scholar 

  • Busam G, Kassemeyer HH, Matern U (1997) Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiol 115:1029–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cadle-Davidson L (2008) Variation within and between Vitis spp. for foliar resistance to the downy mildew pathogen Plasmopara viticola. Plant Dis 92:1577–1584

    PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    CAS  PubMed  Google Scholar 

  • Dick MW (2002) Binomials in the Peronosporales, Sclerosporales and Phytiales. In: Spencer-Phillips PTN, Gisi U, Lebeda A (eds) Advances in downy mildew research. Kluwer Academic Publishers, Dordrecht, pp 225–265

    Google Scholar 

  • Diez-Navajas AM, Wiedemann-Merdinoglu S, Greif C, Merdinoglu D (2008) Nonhost versus host resistance to the grapevine downy mildew, Plasmopara viticola, studied at the tissue level. Phytopathology 98:776–780

    CAS  PubMed  Google Scholar 

  • Doster M, Schnathorst W (1985) Effects of leaf maturity and cultivar resistance on development of the powdery mildew fungus on grapevines. Phytopathology 75:318–321

    Google Scholar 

  • Dubos B (2002) Maladies cryptogamiques de la vigne. Féretedn, Bordeaux

    Google Scholar 

  • Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubreuil-Maurizi C, Trouvelot S, Frettinger P, Pugin A, Wendehenne D, Poinssot B (2010) β-Aminobutyric acid primes an NADPH oxidase-dependent reactive oxygen species production during grapevine-triggered immunity. Mol Plant-Microbe Interact 23:1012–1021

    CAS  PubMed  Google Scholar 

  • Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, Wiedemann-Merdinoglu S, Merdinoglu D, Walker AR, Cadle-Davidson L, Reisch B, Aubourg S, Bentahar N, Shrestha B, Bouquet A, Adam-Blondon AF, Thomas MR, Dry IB (2013) Genetic dissection of a TIR-NB-LRR locus from the wild north American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. Plant J 76(4):661–674

    CAS  PubMed  Google Scholar 

  • Fekete C, Fung RW, Szabo Z, Qiu W, Chang L, Schachtman DP, Kovacs LG (2009) Up-regulated transcripts in a compatible powdery mildew-grapevine interaction. Plant Physiol Biochem 47(8):732–738

    CAS  PubMed  Google Scholar 

  • Figueiredo A, Fortes AM, Ferreira S, Sebastiana M, Choi YH, Sousa L, Acioli-Santos B, Pessoa F, Verpoorte R, Pais MS (2008) Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. J Exp Bot 59:3371–3381

    CAS  PubMed  Google Scholar 

  • Fischer B.M., Salakhutdinov I., Akkurt M., Eibach R., Edwards K.J, Topfer R., Zyprian E.M (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515

  • Fröbel S, Dudenhöffer J, Töpfer R, Zyprian E (2019) Transcriptome analysis of early downy mildew (Plasmopara viticola) defense in grapevines carrying the Asian resistance locus Rpv10. Euphytica 215:28

    Google Scholar 

  • Fung RWM, Qiu WP, Su YC, Schachtman DP, Huppert K, Fekete C, Kovacs LG (2007) Gene expression variation in grapevine species Vitis vinifera L. and Vitis aestivalis Michx. Genet Resour Crop Evol 54:1541–1553

    Google Scholar 

  • Gessler C, Pertot I, Perazzolli M (2011) Plasmopara viticola, the causal agent of downy mildew of grapes. Phytopathol Mediterr 50:3–44

    Google Scholar 

  • Godard S, Slacanin I, Viret O, Gindro K (2009) Induction of defence mechanisms in grapevine leaves by emodin and anthraquinone-rich plant extracts and their conferred resistance to downy mildew. Plant Physiol Biochem 47:827–837

    CAS  PubMed  Google Scholar 

  • Hamiduzzaman MM, Jakab G, Barnavon L, Neuhaus JM, Mauch-Mani B (2005) ß-Aminobutyric acidinduced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Mol Plant-Microbe Interact 18:819–829

    CAS  PubMed  Google Scholar 

  • Han YQ, Zhang K, Yang J, Zhang N, Fang A, Zhang Y, Liu YF, Chen ZY, Hsiang T, Sun WX (2015) Differential expression profiling of the early response to Ustilaginoidea virens, between false smut resistant and susceptible rice varieties. BMC Genomics 16(1):955

    PubMed  PubMed Central  Google Scholar 

  • Harm A, Kassemeyer HH, Seibicke T, Regner F (2011) Evaluation of chemical and natural resistance inducers against downy mildew (Plasmopara viticola) in grapevine. Am J Enol Vitic. https://doi.org/10.5344/ajev.2011.09054

  • Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    CAS  PubMed  Google Scholar 

  • Jürges G, Kassemeyer HH, Dürrenberger M, Düggelin M, Nick P (2009) The mode of interaction between Vitis and Plasmopara viticola Berk. & Curt. Ex de Bary depends on the host species. Plant Biol 11:886–898

    PubMed  Google Scholar 

  • Kortekamp A (2006) Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. Plant Physiol Biochem 44:58–67

    CAS  PubMed  Google Scholar 

  • Kortekamp A, Zyprian E (2003) Characterization of Plasmopara-resistance in grapevine using in vitro plants. J Plant Physiol 160:1393–1400

    CAS  PubMed  Google Scholar 

  • Langmead B., Salzberg S.L (2012) Fast gapped-read alignment with bowtie 2, nature methods 9(4): 357–359

  • Liang C, Liu L, Zang C, Zhao K, Liu C (2015) Characterization and induction kinetics of a putative candidate gene associated with downy mildew resistance in grapevine. Eur J Hortic Sci 80(5):216–224

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Malacarne G, Vrhovsek U, Zulini L, Cestaro A, Stefanini M, Mattivi F, Delledonne M, Velasco R, Moser C (2011) Resistance to Plasmopara viticola in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses. BMC Plant Biol 11:114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet MF, Regad F, Cailleteau B, Hamdi S, Lauvergeat V (2007) Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot 58(8):1999–2010

    CAS  PubMed  Google Scholar 

  • Merdinoglu D, Wiedemann-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Hortic 603:451–456

    CAS  Google Scholar 

  • Minoru K, Susumu G, Shuichi K, Yasushi O, Masahiro H (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 1(32):D277–D280

    Google Scholar 

  • Monteiro F, Sebastiana M, Pais MS, Figueiredo A (2013) Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant Vitis vinifera cultivars. PLoS One 8(9):e72998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Map** and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    CAS  PubMed  Google Scholar 

  • Nascimento R, Maia M, Ferreira AEN, Silva AB, Freire AP, Cordeiro C, Silva MS, Figueiredo A (2019) Early stage metabolic events associated with the establishment of Vitis vinifera - Plasmopara viticola compatible interaction. Plant Physiol Biochem 137:1–13

    CAS  PubMed  Google Scholar 

  • Perazzolli M., B. Roatti, E. Bozza and I. Pertot (2011) Trichoderma harzianum T39 induces resistance against downy mildew by priming for defence without costs for grapevine. Biological Control. https://doi.org/10.1016/j.biocontrol.2011.04.006

  • Polesani M, Bortesi L, Ferrarini A, Zamboni A, Fasoli M, Zadra C et al (2010) General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species. BMC Genomics 11:117

  • Powell S., Szklarczyk D., Trachana K., Roth A., Kuhn M., Muller J., Arnold R., Rattei T., Letunic I., Doerks T., Jensen L.J., von Mering C., Bork P (2011) eggNOG v3.0:orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic acids res. Epub Nov 16; PubMed 22096231

  • Radakovits R, **kerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga: Nannochloropsisgaditana. Nat Commun 3:686

    PubMed  Google Scholar 

  • Seehalak W, Moonsom S, Metheenukul P, Tantasawat P (2011) Isolation of resistance gene analogs from grapevine resistant and susceptible to downy mildew and anthracnose. Sci Hortic 128:357–363

    CAS  Google Scholar 

  • Sha YX, Wang GZ, Fan ZQ (2011) Effect of different humidity time on occurrence of Plasmopara viticola in grape. Acta Agriculturae Boreali-occidentalis Sinica 20(10):196–200

    Google Scholar 

  • Stec N, Banasiak J, Jasiński M (2016) Abscisic acid-an overlooked player in plant-microbe symbioses formation? Acta Biochimica Polonica 63(1):53–58

    CAS  PubMed  Google Scholar 

  • Trouvelot S, Varnier AL, Allegre M, Mercier L, Baillieul F, Arnould C, Gianinazzi-Pearson V, Klarzynski O, Joubert JM, Pugin A, Daire X (2008) A beta-1,3 glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HR-like cell death. Mol Plant-Microbe Interact 21:232–243

    CAS  PubMed  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2009) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138

    CAS  PubMed  Google Scholar 

  • Wang C, Wu J, Zhang Y, Lu J (2018) Muscadinia rotundifolia ‘Noble’ defense response to Plasmopara viticola inoculation by inducing phytohormone-mediated stilbene accumulation. Protoplasma 255:95–107

    CAS  PubMed  Google Scholar 

  • Welter LJ, Gokturk-Baydar N, Akkurt M, Maul E, Eibach R, Topfer R, Zyprian OEM (2007) Genetic map** and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breed 20:359–374

    CAS  Google Scholar 

  • Wu J, Zhang Y, Zhang H, Huang H, Folta KM, Lu J (2010) Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol 10(1):234–250

    PubMed  PubMed Central  Google Scholar 

  • Yu Y, Zhang Y, Yin L, Lu J (2012) The mode of host resistance to Plasmopara viticola infection of grapevines. Phytopathology 102:1094–1101

    PubMed  Google Scholar 

  • Yuan Z, Zhang Y, Xu G, Bi D, Ha Q, Zou X, Gao X, Yang H, He H, Wang X, Bao J, Zuo S, Pan X, Zhou B, Wang G, Qu S (2018) Comparative transcriptome analysis of rhizoctonia solani resistant and susceptible rice cultivars reveals the importance of pathogen recognition and active immune responses in host resistance. Journal of Plant Biology 61(3):143–158

    Google Scholar 

  • Zhang JJ, Yue** W, **** W, Keqiang Y, **xiao Y (2003) An improved method for rapidly extracting total RNA from Vitis. Journal of Fruit Science 20(3):178–181

    CAS  Google Scholar 

Download references

Acknowledgments

For the technical assistance during the data analysis, we would like to thank Bioeditas Technology Corporation (Shanxi, China).

This study was funded by Special Fund for AgroScientific Research in the Public Interest of the People’s Republic of China (201203035), and the Funded Projects for Science and Technology Development Plan of Liaoning (No. 2018103003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Yuan Liu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

ESM 2

(XLS 1370 kb)

ESM 3

(XLS 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, B., Wang, H. et al. Candidate resistance genes selection and transcriptome analysis for the early responses to Plasmopara viticola infection in grape cultivars. J Plant Pathol 102, 857–869 (2020). https://doi.org/10.1007/s42161-020-00546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-020-00546-x

Keywords

Navigation