Log in

Wet spun cellulose nanocrystal/MXene hybrid fiber regulated by bridging effect for high electrochemical performance supercapacitor

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNC) possess a large aspect ratio, high crystallinity, good mechanical performance, and environmental friendliness. It can be used as a frame and spacer of two-dimensional conductive materials, which reduces the stacking effect and is conducive to enhancing the mechanical and electrochemical properties of two-dimensional materials. In this study, CNC-regulated MXene fibers with high electrical conductivity (344.67 S cm−1) were prepared by wet spinning. There is a strong bridging effect between CNC molecules rich in -OH and MXene molecules. This makes them have good compatibility and is good to the preparation of uniform dispersion solution. The prepared hybrid fibers exhibit superior electrochemical performance. In three-electrode system, the volumetric capacitance of the hybrid fibers reaches up to 885.6 F cm−3 (0.38 A cm−3). The energy density of symmetric supercapacitors assembled from CNC/MXene hybrid fibers is 11.30 mWh cm−3, and the power density is 11.40 mW cm−3. Furthermore, after 9000 charge-discharge cycles, the capacitance maintains 93% of its initial capacity, demonstrating outstanding cycle stability. It is believed that this study can provide a simple and effective method for the preparation of portable and wearable energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Wang Y, Xu T, Liu K, Zhang M, Zhao Q, Liang Q, Si C (2023) Nanocellulose-based advanced materials for flexible supercapacitor electrodes. Ind Crop Prod 204:117378. https://doi.org/10.1016/j.indcrop.2023.117378

    Article  CAS  Google Scholar 

  2. Zhang M, Duan Y, Chen T, Qi J, Xu T, Du H, Si C (2023) Lignocellulosic materials for energy storage devices. Ind Crops Prod 203:117174. https://doi.org/10.1016/j.indcrop.2023.117174

    Article  CAS  Google Scholar 

  3. Liu K, Du H, Liu W, Zhang M, Wang Y, Liu H, Zhang X, Xu T, Si C (2022) Strong, flexible, and highly conductive cellulose nanofibril/PEDOT:PSS/MXene nanocomposite films for efficient electromagnetic interference shielding. Nanoscale 14:14902. https://doi.org/10.1039/d2nr00468b

    Article  CAS  PubMed  Google Scholar 

  4. Zhao Q, Xu T, Zhang M, Liu H, Du H, Si C (2023) Zn@cellulose nanofibrils composite three-dimensional carbon framework for long-life Zn anode. Ind Crops Prod 194:116343. https://doi.org/10.1016/j.indcrop.2023.116343

  5. Liu H, Xu T, Liang Q, Zhao Q, Zhao D, Si C (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv Compos Hybrid Mater 5:1168–1179. https://doi.org/10.1007/s42114-022-00427-0

    Article  CAS  Google Scholar 

  6. Li W, Wang G, Sui W, Xu T, Li Z, Parvez AM, Si C (2022) Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes. Carbon 196:819–827. https://doi.org/10.1016/j.carbon.2022.05.053

    Article  CAS  Google Scholar 

  7. Zhao Q, Xu T, Liu K, Du H, Zhang M, Wang Y, Yang L, Zhang H, Wang X, Si C (2024) Biomass-based functional materials for rechargeable Zn-ion batteries. Energy Storage Mater 71:103605. https://doi.org/10.1016/j.ensm.2024.103605

  8. Zheng Y, Liu H, Yan L, Yang H, Dai L, Si C (2024) Lignin-based encapsulation of liquid metal particles for flexible and high-efficiently recyclable electronics. Adv Funct Mater 34:2310653. https://doi.org/10.1002/adfm.202310653

    Article  CAS  Google Scholar 

  9. Zhou H, Yan L, Tang D, Xu T, Dai L, Li C, Chen W, Si C (2024) Solar-driven drum-type atmospheric water harvester based on bio-based gels with fast adsorption/desorption kinetics. Adv Mater 2403876. https://doi.org/10.1002/adma.202403876

  10. Liu W, Du H, Zhang M, Liu K, Liu H, **e H, Zhang X, Si C (2020) Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustain Chem Eng 8:7536–7562. https://doi.org/10.1021/acssuschemeng.0c00125

    Article  CAS  Google Scholar 

  11. Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced Nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33:2101368. https://doi.org/10.1002/adma.202101368

    Article  CAS  Google Scholar 

  12. Xu T, Song Q, Liu K, Liu H, Pan J, Liu W, Dai L, Zhang M, Wang Y, Si C, Du H, Zhang K (2023) Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett 15:1–14. https://doi.org/10.1007/s40820-023-01073-x

    Article  CAS  Google Scholar 

  13. Li W, Wang G, Sui W, Xu T, Dai L, Si C (2023) Lignin-derived heteroatom-doped hierarchically porous carbon for high-performance supercapacitors: “Structure-function” relationships between lignin heterogeneity and carbon materials. Ind Crops Prod 204:117276. https://doi.org/10.1016/j.indcrop.2023.117276

  14. Xu T, Liu K, Sheng N, Zhang M, Liu W, Liu H, Dai L, Zhang X, Si C, Du H, Zhang K (2022) Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater 48:244–262. https://doi.org/10.1016/j.ensm.2022.03.013

    Article  Google Scholar 

  15. Liu H, Xu T, Liu K, Zhang M, Liu W, Li H, Du H, Si C (2021) Lignin-based electrodes for energy storage application. Ind Crop Prod 165:113425. https://doi.org/10.1016/j.indcrop.2021.113425

    Article  CAS  Google Scholar 

  16. Li W, Zhang W, Xu Y, Wang G, Xu T, Nie S, Si C (2024) Lignin-derived materials for triboelectric nanogenerators with emphasis on lignin multifunctionality. Nano Energy 128:109912. https://doi.org/10.1016/j.nanoen.2024.109912

  17. Liu H, Xu T, Cai C, Liu K, Liu W, Zhang M, Du H, Si C, Zhang K (2022) Multifunctional Superelastic, Superhydrophilic, and Ultralight Nanocellulose-Based Composite Carbon Aerogels for Compressive Supercapacitor and Strain Sensor. Adv Funct Mater 32:2113082. https://doi.org/10.1002/adfm.202113082

    Article  CAS  Google Scholar 

  18. Liang Q, Wang Y, Yang Y, Xu T, Xu Y, Zhao Q, Heo S-H, Kim M-S, Jeong Y-H, Yao S, Song X, Choi S-E, Si C (2022) Nanocellulose/two dimensional nanomaterials composites for advanced supercapacitor electrodes. Front Bioeng Biotechnol 10:1024453. https://doi.org/10.3389/fbioe.2022.1024453

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schofield RM, Maciejewska BM, Dong S, Tebbutt GT, McGurty D, Bonilla RS, Assender HE, Grobert N (2023) Driving fiber diameters to the limit: nanoparticle-induced diameter reductions in electrospun photoactive composite nanofibers for organic photovoltaics. Adv Compos Hybrid Mater 6:229. https://doi.org/10.1007/s42114-023-00788-0

    Article  CAS  Google Scholar 

  20. Colorado HA, Gutierrez-Velasquez EI, Gil LD, de Camargo IL (2024) Exploring the advantages and applications of nanocomposites produced via vat photopolymerization in additive manufacturing: a review. Adv Compos Hybrid Mater 7:1. https://doi.org/10.1007/s42114-023-00808-z

    Article  CAS  Google Scholar 

  21. Wang K, Chao Y, Chen Z, Sayyar S, Wang C, Wallace G (2023) Wet spinning of hollow graphene fibers with high capacitance. Chem Eng J 453:139920. https://doi.org/10.1016/j.cej.2022.139920

    Article  CAS  Google Scholar 

  22. Yang Z, Zhao W, Niu Y, Zhang Y, Wang L, Zhang W, **ang X, Li Q (2018) Direct spinning of high-performance graphene fiber supercapacitor with a three-ply core-sheath structure. Carbon 132:241–248. https://doi.org/10.1016/j.carbon.2018.02.041

    Article  CAS  Google Scholar 

  23. Xu Y, Yan Y, Lu W, Yarlagadda S, Xu G (2021) High-performance flexible asymmetric Fiber-shaped Supercapacitor based on CF/PPy and CNT/MnO2 composite electrodes. ACS Appl Energy Mater 4:10639–10645. https://doi.org/10.1021/acsaem.1c01648

    Article  CAS  Google Scholar 

  24. Xu T, Wang Y, Liu K, Zhao Q, Liang Q, Zhang M, Si C (2023) Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv Compos Hybrid Mater 6:108. https://doi.org/10.1007/s42114-023-00675-8

    Article  CAS  Google Scholar 

  25. Wang Z, Chen Y, Yao M, Dong J, Zhang Q, Zhang L, Zhao X (2020) Facile fabrication of flexible rGO/MXene hybrid fiber-like electrode with high volumetric capacitance. J Power Sources 448:227398. https://doi.org/10.1016/j.jpowsour.2019.227398

    Article  CAS  Google Scholar 

  26. Zhou Q, Lv G, Wang X, Teng W, Hu P, Du Y, Li H, Hu Y, Liu W, Wang J (2023) Constructing a hierarchical ternary hybrid of PEDOT:PSS/rGO/MoS2 as an efficient electrode for a flexible Fiber-shaped Supercapacitor. ACS Appl. Energy Mater. 6:5797–5805. https://doi.org/10.1021/acsaem.3c00187

    Article  CAS  Google Scholar 

  27. Zhao G, Qian F, Li X, Tang Y, Sheng Y, Li H, Rao J, Singh MV, Algadi H, Niu M, Zhang W, Guo Z, Peng X, Chen T (2023) Constructing a continuous reduced graphene oxide network in porous plant fiber sponge for highly compressible and sensitive piezoresistive sensors. Adv Compos Hybrid Mater 6:184. https://doi.org/10.1007/s42114-023-00754-w

    Article  CAS  Google Scholar 

  28. Duan Y, Yang H, Liu K, Xu T, Chen J, **e H, Du H, Dai L, Si C (2023) Cellulose nanofibril aerogels reinforcing polymethyl methacrylate with high optical transparency. Adv Compos Hybrid mater 6(3):123. https://doi.org/10.1007/s42114-023-00700-w

    Article  CAS  Google Scholar 

  29. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253. https://doi.org/10.1002/adma.201102306

    Article  CAS  PubMed  Google Scholar 

  30. Zuo X, Chang K, Zhao J, **e Z, Tang H, Li B, Chang Z (2016) Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J Mater Chem A 4:51–58. https://doi.org/10.1039/C5TA06869J

    Article  CAS  Google Scholar 

  31. Ghidiu M, Lukatskaya M, Zhao M, Gogotsi Y, Barsoum M (2014) Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516:78–U171. https://doi.org/10.1038/nature13970

    Article  CAS  PubMed  Google Scholar 

  32. Gao M, Wang F, Yang S, Gaetano Ricciardulli A, Yu F, Li J, Sun J, Wang R, Huang Y, Zhang P, Lu X (2024) Engineered 2D MXene-based materials for advanced supercapacitors and micro-supercapacitors. Mater Today 72:318–358. https://doi.org/10.1016/j.mattod.2023.12.009

    Article  CAS  Google Scholar 

  33. Usman K, Zhang J, Qin S, Yao Y, Lynch P, Mota-Santiago P, Naebe M, Henderson L, Hegh D, Razal J (2022) Inducing liquid crystallinity in dilute MXene dispersions for facile processing of multifunctional fibers. J Mater Chem A 10:4770–4781. https://doi.org/10.1039/D1TA09547A

    Article  CAS  Google Scholar 

  34. Eom W, Shin H, Ambade R, Lee S, Lee K, Kang D, Han T (2020) Large-scale wet-spinning of highly electroconductive MXene fibers. Nat Commun 11:2825. https://doi.org/10.1038/s41467-020-16671-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu X, Huang H, Zhang X, Lin P, Huang J, Sheng X, Zhang L, Qu J (2019) Novel light-driven and electro-driven polyethylene glycol/two-dimensional MXene form-stable phase change material with enhanced thermal conductivity and electrical conductivity for thermal energy storage. Compos Pt B-Eng 177:107372. https://doi.org/10.1016/j.compositesb.2019.107372

    Article  CAS  Google Scholar 

  36. Chen R, Tang H, Dai Y, Zong W, Zhang W, He G, Wang X (2022) Robust bioinspired MXene-hemicellulose composite films with excellent electrical conductivity for multifunctional electrode applications. ACS Nano 16:19124–19132. https://doi.org/10.1021/acsnano.2c08163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Usman K, Zhang J, Bacal C, Qin S, Mota-Santiago P, Lynch P, Naebe M, Henderson L, Hegh D, Razal J (2022) Tension-induced toughening and conductivity enhancement in sequentially bridged MXene fibers. 2D Mater 9:044003. https://doi.org/10.1088/2053-1583/ac8c51

    Article  CAS  Google Scholar 

  38. Jiang Q, Lei Y, Liang H, ** K, **a C, Alshareef HN (2020) Review of MXene electrochemical microsupercapacitors. Energy Storage Mater 27:78–95. https://doi.org/10.1016/j.ensm.2020.01.018

    Article  Google Scholar 

  39. Khumujam D, Kshetri T, Singh T, Kim N, Lee J (2022) Fibrous asymmetric supercapacitor based on wet spun MXene/PAN Fiber-derived multichannel porous MXene/CF negatrode and NiCo2S4 electrodeposited MXene/CF positrode. Chem Eng J 449:137732. https://doi.org/10.1016/j.cej.2022.137732

    Article  CAS  Google Scholar 

  40. Li H, Shao F, Wen X, Ding Y, Zhou C, Zhang Y, Wei H, Hu N (2021) Graphene/MXene fibers-enveloped sulfur cathodes for high-performance Li-S batteries. Electrochim Acta 371:137838. https://doi.org/10.1016/j.electacta.2021.137838

    Article  CAS  Google Scholar 

  41. Zhao X, Zhang J, Lv K, Kong N, Shao Y, Tao J (2022) Carbon nanotubes boosts the toughness and conductivity of wet-spun MXene fibers for fiber-shaped super capacitors. Carbon 200:38–46. https://doi.org/10.1016/j.carbon.2022.08.045

    Article  CAS  Google Scholar 

  42. Yu W, Li Y, **n B, Lu Z (2022) MXene/PVA Fiber-based Supercapacitor with Stretchability for wearable energy storage Fiber. Polym. 23:2994–3001. https://doi.org/10.1007/s12221-022-4389-4

    Article  CAS  Google Scholar 

  43. Liu H, Du H, Zheng T, Liu K, Ji X, Xu T, Zhang X, Si C (2021) Cellulose based composite foams and aerogels for advanced energy storage devices. Chem Eng J 426:130817. https://doi.org/10.1016/j.cej.2021.130817

    Article  CAS  Google Scholar 

  44. Chen G, Chen T, Hou K, Ma W, Tebyetekerwa M, Cheng Y, Weng W, Zhu M (2018) Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon 127:218–227. https://doi.org/10.1016/j.carbon.2017.11.012

    Article  CAS  Google Scholar 

  45. Liu K, Liu W, Li W, Duan Y, Zhou K, Zhang S, Ni S, Xu T, Du H, Si C (2022) Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv Compos Hybrid Mater 5:1078–1089. https://doi.org/10.1007/s42114-022-00425-2

    Article  CAS  Google Scholar 

  46. Liu W, Lin Q, Chen S, Yang H, Liu K, Pang B, Xu T, Si C (2023) Microencapsulated phase change material through cellulose nanofibrils stabilized Pickering emulsion templating. Adv. Compos. Hybrid Mater 6(4):149. https://doi.org/10.1007/s42114-023-00725-1

    Article  CAS  Google Scholar 

  47. Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K (2022) Cellulose Nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett 14:1–27. https://doi.org/10.1007/s40820-022-00849-x

    Article  CAS  Google Scholar 

  48. Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C (2023) Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr Polym 313:120851. https://doi.org/10.1016/j.carbpol.2023.120851

    Article  CAS  PubMed  Google Scholar 

  49. Zhang M, Wang Y, Liu K, Liu Y, Xu T, Du H, Si C (2023) Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Carbohydr Polym 305:120567. https://doi.org/10.1016/j.carbpol.2023.120567

    Article  CAS  PubMed  Google Scholar 

  50. Liang Q, Liu K, Xu T, Wang Y, Zhang M, Zhao Q, Zhong W, Cai X, Zhao Z, Si C (2023) Interfacial modulation of Ti3C2Tx MXene by cellulose Nanofibrils to construct hybrid fibers with high volumetric specific capacitance. Small 20:2307344. https://doi.org/10.1002/smll.202307344

    Article  CAS  Google Scholar 

  51. Xu T, Yang D, Fan Z, Li X, Liu Y, Guo C, Zhang M, Yu Z (2019) Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon 152:134–143. https://doi.org/10.1016/j.carbon.2019.06.005

    Article  CAS  Google Scholar 

  52. Xu L, Wang W, Liu Y, Liang D (2022) Nanocellulose-linked MXene/polyaniline aerogel films for flexible Supercapacitors. Gels 8:798. https://doi.org/10.3390/gels8120798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhan Z, Song Q, Zhou Z, Lu C (2019) Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. J Mater Chem C 7:9820–9829. https://doi.org/10.1039/C9TC03309B

    Article  CAS  Google Scholar 

  54. Bi X, Li M, Zhou G, Liu C, Huang R, Shi Y, Xu B, Guo Z, Fan W, Algadi H, Ge S (2023) High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode. Nano Res 16:7696–7709. https://doi.org/10.1007/s12274-023-5586-1

    Article  CAS  Google Scholar 

  55. Wu S, Luo H, Shen W, Su J, Ma C, Wu J (2022) Rapidly NIR-responsive electrospun shape memory actuators with MXene/CNCs hybrids. Mater Lett 314:131922. https://doi.org/10.1016/j.matlet.2022.131922

    Article  CAS  Google Scholar 

  56. Cui Z, Gao C, Fan Z, Wang J, Cheng Z, **e Z, Liu Y, Wang Y (2021) Lightweight MXene/cellulose nanofiber composite film for electromagnetic interference shielding. J Electron Mater 50:2101–2110. https://doi.org/10.1007/s11664-020-08718-2

    Article  CAS  Google Scholar 

  57. VahidMohammadi A, Mojtabavi M, Caffrey N, Wanunu M, Beidaghi M (2019) Assembling 2D MXenes into highly stable Pseudocapacitive electrodes with high power and energy densities. Adv Mater 31:1806931. https://doi.org/10.1002/adma.201806931

    Article  CAS  Google Scholar 

  58. Wu G, Yang Z, Zhang Z, Ji B, Hou C, Li Y, Jia W, Zhang Q, Wang H (2021) Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Electrochim Acta 395:139141. https://doi.org/10.1016/j.electacta.2021.139141

    Article  CAS  Google Scholar 

  59. Zheng T, Zhang X, Li Y, Zhu Y, Yan W, Zhao Z, Zhang L, Bai C, Wang X (2023) Wet-spinning of continuous hyaluronic-based MXene/CNTs hybrid fibers for flexible supercapacitor applications. Mater Lett 336:133891. https://doi.org/10.1016/j.matlet.2023.133891

    Article  CAS  Google Scholar 

  60. Seyedin S, Yanza E, Razal J (2017) Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. J Mater Chem A 5:24076–24082. https://doi.org/10.1039/c7ta08355f

    Article  CAS  Google Scholar 

  61. Levitt A, Seyedin S, Zhang J, Wang X, Razal J, Dion G, Gogotsi Y (2020) Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated Nanoyarns. Small 16:2002158. https://doi.org/10.1002/smll.202002158

    Article  CAS  Google Scholar 

  62. Zhang J, Seyedin S, Qin S, Wang Z, Moradi S, Yang F, Lynch P, Yang W, Liu J, Wang X, Razal J (2019) Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic Fiber-shaped Supercapacitors. Small 15:1804732. https://doi.org/10.1002/smll.201804732

    Article  CAS  Google Scholar 

  63. Uzun S, Seyedin S, Stoltzfus A, Levitt A, Alhabeb M, Anayee M, Strobel C, Razal J, Dion G, Gogotsi Y (2019) Knittable and washable multifunctional MXene-coated cellulose yarns. Adv Funct Mater 29:1905015. https://doi.org/10.1002/adfm.201905015

    Article  CAS  Google Scholar 

  64. Yang Q, Xu Z, Fang B, Huang T, Cai S, Chen H, Liu Y, Gopalsamy K, Gao W, Gao C (2017) MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem A 5:22113–22119. https://doi.org/10.1039/C7TA07999K

    Article  CAS  Google Scholar 

  65. He G, Cai Z, **ang S, Cai D (2022) Shearing MXene sediment enables formation of the liquid crystal phase for spinning Ultradense fibers with high electrochemical performance. ACS Appl Nano Mater 5:303–308. https://doi.org/10.1021/acsanm.1c03001

    Article  CAS  Google Scholar 

  66. Li S, Fan Z, Wu G, Shao Y, **a Z, Wei C, Shen F, Tong X, Yu J, Chen K, Wang M, Zhao Y, Luo Z, Jian M, Sun J, Kaner RB, Shao Y (2021) Assembly of Nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS Nano 15:7821–7832. https://doi.org/10.1021/acsnano.1c02271

    Article  CAS  PubMed  Google Scholar 

  67. Liu Q, Zhao A, He X, Li Q, Sun J, Lei Z, Liu Z (2021) Ti3C2Tx/RGO/TANI/RGO all-solid-state asymmetrical fiber supercapacitor with high energy density and superior flexibility. J Alloy Compd 861:157950. https://doi.org/10.1016/j.jallcom.2020.157950

    Article  CAS  Google Scholar 

  68. Yu C, Gong Y, Chen R, Zhang M, Zhou J, An J, Lv F, Guo S, Sun G (2018) A solid-state Fibriform Supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene Nanosheets. Small 14:1801203. https://doi.org/10.1002/smll.201801203

    Article  CAS  Google Scholar 

  69. Lu M, Zhang Z, Kang L, He X, Li Q, Sun J, Jiang R, Xu H, Shi F, Liu Z Intercalation and Delamination Behavior of Ti3C2Tx and MnO2/Ti3C2Tx/RGO Flexible Fiber with High Volumetric Capacitance. J Mater Chem 7:12582. https://doi.org/10.1039/C9TA01993F

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32371809 and 32301530), the Open Project of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Natural Science Foundation of Tian** (23JCZDJC00630), Young Elite Scientist Sponsorship Program by Cast (No.YESS20230242), and the China Postdoctoral Science Foundation (2023 M740563).

Author information

Authors and Affiliations

Authors

Contributions

Yaxuan Wang and Ting Xu made plans for the experiment. Yaxuan Wang, Junjie Qi, Aoran Wang, Kun Liu, Meng Zhang, Weiwei Huan completed the experiment, processed the data and drafted the manuscript. Ting Xu, Yu Meng, Shuhua Tong, Chunyang Zheng, Hengxue **ang, Jie Li, Chuanling Si supervised the manuscript. All authors discussed the experiments and results and have given approval for the final version of the manuscript.

Corresponding authors

Correspondence to Ting Xu, Hengxue **ang, Jie Li or Chuanling Si.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

The online version contains supplementary material available at (DOCX 17729 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xu, T., Qi, J. et al. Wet spun cellulose nanocrystal/MXene hybrid fiber regulated by bridging effect for high electrochemical performance supercapacitor. Adv Compos Hybrid Mater 7, 120 (2024). https://doi.org/10.1007/s42114-024-00918-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00918-2

Keywords

Navigation