Log in

N-doped bimetallic phosphides composite catalysts derived from metal–organic frameworks for electrocatalytic water splitting

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Exceptional electrocatalytic activities and synergistic effect of bimetallic phosphides make them ideal electrocatalysts for water splitting. Herein, we developed composite bimetallic phosphides derived from metal–organic framework (MOF) as oxygen evolution reaction (OER) catalysts. Despite their exceptional electrocatalytic activity, the complicated synthesis strategy of MOF-derived bimetallic phosphides still hinders their further development in OER. In this work, we applied an oil bath plus solvothermal approach to synthesize N-doped MOF-derived bimetallic phosphides catalysts with superior catalytic activities. Furthermore, the addition of N atom and taking advantage of the collaborative effect of Ni and Co can enhance their performance of the OER. Through optimizing the Ni/Co ratio, when current density reaches 10 mA cm−2, an extremely low overpotential of 290.0 ± 2.4 mV and Tafel slope of 60.85 mV dec−1 were obtained based on the N-Ni2Co3-P catalysts. Furthermore, the degree of phosphating plays a crucial role to obtain high ectrocatalytic activities. The excellent catalytic stability of these catalysts was demonstrated in a long-term stability test, where no decay was observed after 14 h in KOH (pH = 13.5) electrolyte. Our research not only provides a versatile method to produce high-efficiency sustainable electrocatalyst, but also supplies the promising outlook for designing and develo** multicomponent electrocatalysts.

Graphical Abstract

The N-doped MOF-derived bimetallic phosphides catalysts with superior catalytic activities were synthesized using an oil bath plus solvothermal approach. An extremely low overpotential of 290.0 ± 2.4 mV at 10 mA cm−2 and Tafel slope of 60.85 mV dec−1 were achieved based on the N-Ni2Co3-P catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data that support the findings of this study are available in this article and its Supplementary Information.

References

  1. Wang J, Fu R, Wen S, Ning P, Helal MH, Salem MA, Xu BB, El-Bahy ZM, Huang M, Guo Z (2022) Progress and current challenges for CO2 capture materials from ambient air. Adv Compos Hybrid Mater 5:2721–2759. https://doi.org/10.1007/s42114-022-00567-3

    Article  CAS  Google Scholar 

  2. Hamukwaya SL, Zhao Z, Hao H, Abo-Dief HM, Abualnaja KM, Alanazi AK, Mashingaidze MM, El-Bahy SM, Huang M, Guo Z (2022) Enhanced photocatalytic performance for hydrogen production and carbon dioxide reduction by a mesoporous single-crystal-like TiO2 composite catalyst. Adv Compos Hybrid Mater 5(3):2620–2630. https://doi.org/10.1007/s42114-022-00545-9

    Article  CAS  Google Scholar 

  3. Chamanehpour E, Sayadi MH, Hajiani M (2022) A hierarchical graphitic carbon nitride supported by metal-organic framework and copper nanocomposite as a novel bifunctional catalyst with long-term stability for enhanced carbon dioxide photoreduction under solar light irradiation. Adv Compos Hybrid Mater 5(3):2461–2477. https://doi.org/10.1007/s42114-022-00459-6

    Article  CAS  Google Scholar 

  4. Li Y, Li L, Luo S, Huang X, Shen J, Jiang C, **g F (2021) The role of K in tuning oxidative dehydrogenation of ethane with CO2 to be selective toward ethylene. Adv Compos Hybrid Mater 4(3):793–805. https://doi.org/10.1007/s42114-021-00280-7

    Article  CAS  Google Scholar 

  5. Jyoti R, Deji, Chauhan M, Choudhary BC, Sharma RK (2022) Density functional theory study of manganese doped armchair graphene nanoribbon for effective carbon dioxide gas sensing. ES Energy Environ 18:47–55. https://doi.org/10.30919/esee8c701

  6. Zheng S, Zhang M, Na M, Yang Y, Luo Z, Lu Q (2022) Calculations of narrow-band transmissivity and the Planck mean absorption coefficients of CO2 based on high-resolution transmission molecular absorption, high-temperature molecular spectroscopic and CO2 databank databases. ES Energy Environ 17:33–43. https://doi.org/10.30919/esee8c635.

  7. Omer AM (2008) Energy, environment and sustainable development. Renew Sust Energ Rev 12(9):2265–2300. https://doi.org/10.1016/j.rser.2007.05.001

    Article  CAS  Google Scholar 

  8. Chen L, Chen G, Tang W, Wang H, Chen F, Liu X, Ma R (2020) A robust and lithiophilic three-dimension framework of CoO nanorod arrays on carbon cloth for cycling-stable lithium metal anodes. Mater Today Energy 18:100520. https://doi.org/10.1016/j.mtener.2020.100520

  9. Chen L, Chen G, Wen Z, Wu D, Qin Z, Zhang N, Liu X, Ma R (2022) Electroplating CuO nanoneedle arrays on Ni foam as superior 3D scaffold for dendrite-free and stable Li metal anode. Appl Surf Sci 599:153955. https://doi.org/10.1016/j.apsusc.2022.153955

  10. Lian M, Sun J, Jiang D, Xu M, Wu Z, Xu B B, Algadi H, Huang M, Guo Z (2022) Waterwheel-inspired high-performance hybrid electromagnetic-triboelectric nanogenerators based on fluid pipeline energy harvesting for power supply systems and data monitoring. Nanotechnol 34(2):025401. https://doi.org/10.1088/1361-6528/ac97f1

  11. Zhang Y, Zheng J, Nan J, Gai C, Shao Q, Murugadoss V, Maganti S, Naik N, Algadi H, Huang M (2023) Influence of mass ratio and calcination temperature on physical and photoelectrochemical properties of ZnFe-layered double oxide/cobalt oxide heterojunction semiconductor for dye degradation applications. Particuology 74:141–155. https://doi.org/10.1016/j.partic.2022.05.010

    Article  CAS  Google Scholar 

  12. Zhang B, Zheng Y, Ma T, Yang C, Peng Y, Zhou Z, Zhou M, Li S, Wang Y, Cheng C (2021) Designing MOF nanoarchitectures for electrochemical water splitting. Adv Mater 33(17):2006042. https://doi.org/10.1002/adma.202006042

    Article  CAS  Google Scholar 

  13. Veziroğlu TN, Şahi S (2008) 21st century’s energy: hydrogen energy system. Energy Convers Manage 49(7):1820–1831. https://doi.org/10.1016/j.enconman.2007.08.015

    Article  CAS  Google Scholar 

  14. Xu J, Zhu P, El Azab IH, Xu BB, Guo Z, Elnaggar AY, Mersal GA, Liu X, Zhi Y, Lin Z (2022) An efficient bifunctional Ni-Nb2O5 nanocatalysts for the hydrodeoxygenation of anisole. Chinese J Chem Eng 49:187–197. https://doi.org/10.1016/j.cjche.2022.07.009

    Article  CAS  Google Scholar 

  15. Wang R, Meng Z, Yan X, Tian T, Lei M, Pashameah RA, Abo-Dief HM, Algadi H, Huang N, Guo Z (2023) Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries. J Mater Sci Technol 137:215–222. https://doi.org/10.1016/j.jmst.2022.07.041

    Article  Google Scholar 

  16. Sun H, Xu X, Song Y, Zhou W, Shao Z (2021) Designing high-valence metal sites for electrochemical water splitting. Adv Funct Mater 31(16):2009779. https://doi.org/10.1002/adfm.202009779

    Article  CAS  Google Scholar 

  17. Chen GF, Ma TY, Liu ZQ, Li N, Su YZ, Davey K, Qiao SZ (2016) Efficient and stable bifunctional electrocatalysts Ni/NixMy (M= P, S) for overall water splitting. Adv Funct Mater 26(19):3314–3323. https://doi.org/10.1002/adfm.201505626

    Article  CAS  Google Scholar 

  18. Sarwar S, Lin M-C, Ahasan MR, Wang Y, Wang R, Zhang X (2022) Direct growth of cobalt-doped molybdenum disulfide on graphene nanohybrids through microwave irradiation with enhanced electrocatalytic properties for hydrogen evolution reaction. Adv Compos Hybrid Mater 5(3):2339–2352. https://doi.org/10.1007/s42114-022-00424-3

    Article  CAS  Google Scholar 

  19. Zhao J, Bao K, **e M, Wei D, Yang K, Zhang X, Zhang C, Wang Z, Yang X (2022) Two-dimensional ultrathin networked CoP derived from Co(OH)2 as efficient electrocatalyst for hydrogen evolution. Adv Compos Hybrid Mater 5(3):2421–2428. https://doi.org/10.1007/s42114-022-00455-w

    Article  CAS  Google Scholar 

  20. Rokade A, Jadhav Y, Jathar S, Rahane S, Barma S, Rahane G, Thawarkar S, Vairale P, Punde A, Shah S, Rondiya S, Dzade N, Pandit B, Pawar J, Roy A, Jadkar S (2022) Realization of electrochemically grown a-Fe2O3 thin films for photoelectrochemical water splitting application. Eng Sci 17:242–255. https://doi.org/10.30919/es8d532

  21. Chakraborty I, Guo Z, B A, yopadhyay y, Sahoo P (2022) Physical modifications and algorithmic predictions behind further advancing 2D water splitting photocatalyst: an overview. Eng Sci 20:34–46. https://doi.org/10.30919/es8d755.

  22. Li S, Fan J, Li S, ** H, Luo W, Ma Y, Wu J, Chao Z, Naik N, Pan D, Guo Z (2022) Synthesis of three dimensional Mo-doped nickel sulfide mesoporous nanostructures/Ni foam composite for supercapacitor and overall water splitting. ES Energy Environ 16:15–25. https://doi.org/10.30919/esee8c646

  23. Shi Q, Zhu C, Du D, Lin Y (2019) Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem Soc Rev 48(12):3181–3192. https://doi.org/10.1039/C8CS00671G

    Article  CAS  Google Scholar 

  24. Zhong X, Wan H, Lin Y, Chen G, Wu D, Zheng Z, Liu X, Zhang Y (2022) N-doped bimetallic sulfides hollow spheres derived from metal-organic frameworks toward cost-efficient and high performance oxygen evolution reaction. Appl Surf Sci 591:153173. https://doi.org/10.1016/j.apsusc.2022.153173

  25. Song J, Wei C, Huang ZF, Liu C, Zeng L, Wang X, Xu ZJ (2020) A review on fundamentals for designing oxygen evolution electrocatalysts. Chem Soc Rev 49(7):2196–2214. https://doi.org/10.1039/C9CS00607A

    Article  CAS  Google Scholar 

  26. Jamesh MI, Harb M (2021) Tuning the electronic structure of the earth-abundant electrocatalysts for oxygen evolution reaction (OER) to achieve efficient alkaline water splitting-A review. J Energy Chem 56:299–342. https://doi.org/10.1016/j.jechem.2020.08.001

    Article  CAS  Google Scholar 

  27. Jiang Y, Mao Y, Jiang Y, Liu H, Shen W, Li M, He R (2022) Atomic equidistribution enhanced RuIr electrocatalysts for overall water splitting in the whole pH range. Chem Eng J 450:137909. https://doi.org/10.1016/j.cej.2022.137909

  28. Gonzalez-Huerta R, Ramos-Sanchez G, Balbuena P (2014) Oxygen evolution in Co-doped RuO2 and IrO2: Experimental and theoretical insights to diminish electrolysis overpotential. J Power Sources 268:69–76. https://doi.org/10.1016/j.jpowsour.2014.06.029

    Article  CAS  Google Scholar 

  29. Vazquez-Gomez L, Ferro S, De Battisti A (2006) Preparation and characterization of RuO2–IrO2–SnO2 ternary mixtures for advanced electrochemical technology. Appl Catal B 67(1–2):34–40. https://doi.org/10.1016/j.apcatb.2006.03.023

    Article  CAS  Google Scholar 

  30. Wang B, Ye Y, Xu L, Quan Y, Wei W, Zhu W, Li H, **a J (2020) Space-confined yolk-shell construction of Fe3O4 nanoparticles inside N-doped hollow mesoporous carbon spheres as bifunctional electrocatalysts for long-term rechargeable zinc-air batteries. Adv Funct Mater 30(51):2005834. https://doi.org/10.1002/adfm.202005834

    Article  CAS  Google Scholar 

  31. Liao C, Yang B, Zhang N, Liu M, Chen G, Jiang X, Chen G, Yang J, Liu X, Chan TS (2019) Constructing conductive interfaces between nickel oxide nanocrystals and polymer carbon nitride for efficient electrocatalytic oxygen evolution reaction. Adv Funct Mater 29(40):1904020. https://doi.org/10.1002/adfm.201904020

    Article  CAS  Google Scholar 

  32. Sun H, Jung W (2021) Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction. J Mater Chem A 9:15506–15521. https://doi.org/10.1039/D1TA03452A

    Article  CAS  Google Scholar 

  33. Wu ZP, Lu XF, Zang SQ, Lou XW (2020) Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv Funct Mater 30(15):1910274. https://doi.org/10.1002/adfm.201910274

    Article  CAS  Google Scholar 

  34. Subbaraman R, Tripkovic D, Chang K-C, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M (Ni Co, Fe, Mn) hydr (oxy) oxide catalysts. Nat Mater 11(6):550–557. https://doi.org/10.1038/nmat3313

    Article  CAS  Google Scholar 

  35. Zhu Y, Liu Y, Ren T, Yuan Z (2015) Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv Funct Mater 25(47):7337–7347. https://doi.org/10.1039/C5EE01155H

    Article  CAS  Google Scholar 

  36. Yu J, Li Q, Li Y, Xu CY, Zhen L, Dravid VP, Wu J (2016) Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv Funct Mater 26(42):7644–7651. https://doi.org/10.1002/adfm.201603727

    Article  CAS  Google Scholar 

  37. Ledendecker M, Krick Calderón S, Papp C, Steinrück HP, Antonietti M, Shalom M (2015) The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew Chem Int Ed 54(42):12361–12365. https://doi.org/10.1002/anie.201502438

    Article  CAS  Google Scholar 

  38. Sheng Q, Li X, Prins R, Liu C, Hao Q, Chen S (2021) Understanding the reduction of transition-metal phosphates to transition-metal phosphides by combining temperature-programmed reduction and infrared spectroscopy. Angew Chem Int Ed 60(20):11180–11183. https://doi.org/10.1002/anie.202100767

    Article  CAS  Google Scholar 

  39. Huang Z, Chen Z, Chen Z, Lv C, Meng H, Zhang C (2014) Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 8(8):8121–8129. https://doi.org/10.1021/nn5022204

    Article  CAS  Google Scholar 

  40. Nan J, Guo S, Alhashmialameer D, He Q, Meng Y, Ge R, El-Bahy SM, Naik N, Murugadoss V, Huang M (2022) Hydrothermal microwave synthesis of Co3O4/In2O3 nanostructures for photoelectrocatalytic reduction of Cr (VI). ACS Applied Nano Materials 5(7):8755–8766. https://doi.org/10.1021/acsanm.2c00107

    Article  CAS  Google Scholar 

  41. Liu M, Wu H, Wu Y, **e P, Pashameah RA, Abo-Dief HM, El-Bahy SM, Wei Y, Li G, Li W (2022) The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Mater 5(3):2021–2030. https://doi.org/10.1007/s42114-022-00541-z

    Article  CAS  Google Scholar 

  42. Zhang Z, Liu M, Ibrahim MM, Wu H, Wu Y, Li Y, Mersal GA, El Azab IH, El-Bahy SM, Huang M (2022) Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 5:1054–1066. https://doi.org/10.1007/s42114-022-00486-3

    Article  CAS  Google Scholar 

  43. **e P, Shi Z, Feng M, Sun K, Liu Y, Yan K, Liu C, Moussa TA, Huang M, Meng S (2022) Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater 5:679–695. https://doi.org/10.1007/s42114-022-00479-2

    Article  Google Scholar 

  44. Liang Q, Chen J, Wang F, Li Y (2020) Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord Chem Rev 424:213488. https://doi.org/10.1016/j.ccr.2020.213488

  45. Zhu W, Chen Z, Pan Y, Dai R, Wu Y, Zhuang Z, Wang D, Peng Q, Chen C, Li Y (2019) Functionalization of hollow nanomaterials for catalytic applications: nanoreactor construction. Adv Mater 31(38):1800426. https://doi.org/10.1002/adma.201800426

    Article  CAS  Google Scholar 

  46. **g C, Zhang Y, Zheng J, Ge S, Lin J, Pan D, Naik N, Guo Z (2022) In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology 69:111–122. https://doi.org/10.1016/j.partic.2021.11.013

    Article  CAS  Google Scholar 

  47. Faustini M, Nicole L, Ruiz Hitzky E, Sanchez C (2018) History of organic-inorganic hybrid materials: prehistory, art, science, and advanced applications. Adv Funct Mater 28(27):1704158. https://doi.org/10.1002/adfm.201704158

    Article  CAS  Google Scholar 

  48. Rui K, Zhao G, Chen Y, Lin Y, Zhou Q, Chen J, Zhu J, Sun W, Huang W, Dou S (2018) Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv Funct Mater 28(26):1801554. https://doi.org/10.1002/adfm.201801554

    Article  CAS  Google Scholar 

  49. Xuan C, Wang J, **a W, Peng Z, Wu Z, Lei W, **a K, **n HL, Wang D, interfaces, (2017) Porous structured Ni-Fe-P nanocubes derived from a prussian blue analogue as an electrocatalyst for efficient overall water splitting. ACS Appl Mater Interfaces 9(31):26134–26142. https://doi.org/10.1021/acsami.7b08560

    Article  CAS  Google Scholar 

  50. Yu X-Y, Feng Y, Guan B, Lou XWD, Paik UJE (2016) Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy Environ Sci 9(4):1246–1250. https://doi.org/10.1039/C6EE00100A

    Article  CAS  Google Scholar 

  51. Yang J, **ong P, Zheng C, Qiu H, Wei M (2014) Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J Mater Chem A 2(39):16640–16644. https://doi.org/10.1039/C4TA04140B

    Article  CAS  Google Scholar 

  52. Mesbah A, Rabu P, Sibille R, Lebègue S, Mazet T, Malaman B, François M (2014) From hydrated Ni3(OH)2(C8H4O4)2(H2O)4 to anhydrous Ni2(OH)2(C8H4O4): impact of structural transformations on magnetic properties. Inorg Chem 53(2):872–881. https://doi.org/10.1021/ic402106v

    Article  CAS  Google Scholar 

  53. Ye N, Ma J, An J, Li J, Cai Z, Zong H (2016) Separation of amino acid enantiomers by a capillary modified with a metal-organic framework. RSC Adv 6(47):41587–41593. https://doi.org/10.1039/C6RA02741E

    Article  CAS  Google Scholar 

  54. Li Y, Liu J, Chen C, Zhang X, Chen J (2017) Preparation of NiCoP hollow quasi-polyhedra and their electrocatalytic properties for hydrogen evolution in alkaline solution. ACS Appl Mater Interfaces 9(7):5982–5991. https://doi.org/10.1021/acsami.6b14127

    Article  CAS  Google Scholar 

  55. Zhang X, Huang L, Wang Q, Dong S (2017) Transformation of homobimetallic MOF into nickel-cobalt phosphide/nitrogen-doped carbon polyhedral nanocages for efficient oxygen evolution electrocatalysis. J Mater Chem A 5(35):18839–18844. https://doi.org/10.1039/C7TA06272A

    Article  CAS  Google Scholar 

  56. Balogun M-S, Qiu W, Yang H, Fan W, Huang Y, Fang P, Li G, Ji H, Tong Y (2016) A monolithic metal-free electrocatalyst for oxygen evolution reaction and overall water splitting. Energy Environ Sci 9(11):3411–3416.https://doi.org/10.1039/C6EE01930G

  57. Wang C, Chen W, Yuan D, Qian S, Cai D, Jiang J, Zhang S (2020) Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions. Nano Energy 69:104453. https://doi.org/10.1016/j.nanoen.2020.104453

  58. Xu Y, Tu W, Zhang B, Yin S, Huang Y, Kraft M, Xu R (2017) Nickel nanoparticles encapsulated in few-layer nitrogen-doped graphene derived from metal-organic frameworks as efficient bifunctional electrocatalysts for overall water splitting. Adv Mater 29(11):1605957. https://doi.org/10.1002/adma.201605957

    Article  CAS  Google Scholar 

  59. Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365. https://doi.org/10.1039/C6CS00328A

    Article  CAS  Google Scholar 

  60. **ao X, He CT, Zhao S, Li J, Lin W, Yuan Z, Zhang Q, Wang S, Dai L, Yu D (2017) A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy Environ Sci 10(4):893–899. https://doi.org/10.1039/C6EE03145E

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support by several sources, including the Open Foundation of State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, under Grant 2022GXYSOF22; and Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R230), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

**aohui Lin, Long Chen, and ** Zhong made equal contributions to this work. **aohui Lin and Long Chen wrote the original manuscript of this paper. ** Zhong conducted material synthesis and electrochemical tests. Weiqi Dang, Hao Huang, and Handong Li: investigation, validation, formal analysis. Amal BaQais, Mohammed A. Amin, and Gemeng Liang have involved in significant discussions and property analysis. Guoxia Liu and Zhenyu Yang revised and reviewed our manuscript and replied to comments.

Corresponding authors

Correspondence to Guoxia Liu or Zhenyu Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2071 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Chen, L., Zhong, X. et al. N-doped bimetallic phosphides composite catalysts derived from metal–organic frameworks for electrocatalytic water splitting. Adv Compos Hybrid Mater 6, 79 (2023). https://doi.org/10.1007/s42114-023-00660-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00660-1

Keywords

Navigation