Log in

Numerical investigation on thermohydraulic and exergy performance enhancement for triplex concentric tube heat exchanger using MXene nanofluids

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

This study delves into heat transfer characteristics and fluid flow within a triplex tube heat exchanger (TTHX), employing water- and water-based 1% v/v. MXene and Al2O3 nanofluids. It scrutinizes the impact of the Reynolds number on various performance metrics such as heat transfer coefficients, performance evaluation criteria (PEC), effectiveness, exergy loss, and entropy generation. Employing a 3D RNG/k-ε model with improved wall treatment, which has been validated by empirical correlation data available in the literature, the research uncovers that the utilization of MXene nanofluid led to a 12.51% increase in heat transfer coefficients compared to the Al2O3 nanofluid and a 20% increase as compared to water, when deployed in a counter-flow configuration of the TTHX. Notably, the PEC and effectiveness graph indicate that MXene nanofluid exhibits a substantial increase of 21.73% and 29.71% over Al2O3 nanofluid at a Reynolds number of 6800 and 4400. Additionally, the exergy loss and entropy generation with Mxene nanofluid is reduced by 10.5% and 33.34% compared to Al2O3 nanofluid. Consequently, MXene nanofluids have the potential to significantly enhance the overall performance of a triplex tube heat exchanger compared to conventional fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ρ bf :

Density of base fluid (kg/m3)

ρ nf :

Density of nanofluid (kg/m3)

µ bf :

Dynamic viscosity of base fluid (Pa-s)

µ nf :

Dynamic viscosity of nanofluid (Pa-s)

ρ np :

Density of nanoparticle (kg/m3)

c p , bj :

Specific heat at constant pressure for base fluid (kJ/kgK)

c p , nf :

Specific heat at constant pressure for nanofluid (kJ/kgK)

c p , np :

Specific heat at constant pressure for nanoparticle (kJ/kgK)

k bf :

Thermal conductivity of the base fluid (W/mK)

k np :

Thermal conductivity of nanofluid (W/mK)

k nf :

Thermal conductivity of nanoparticle (W/mK)

k:

Turbulent kinetic energy (m2/s2)

ε:

Turbulence dissipation rate (m2/s3)

ε:

Effectiveness

φ:

Volume fraction

Q:

Heat transfer rate (W)

C:

Heat capacity rate (J/K)

Nu:

Nusselt Number

Pr:

Prandtl Number

gen :

Entropy generation (kJ/kgK)

T:

Temperature (K)

h:

Heat transfer coefficients (W/m2K)

Re:

Reynolds Number

k:

Thermal conductivity (W/mK)

m:

Mass flow rate (kg/s)

TTHX:

Triplex tube Heat Exchanger

NHC:

Normal Hot Cold

References

  • Abdelrazik, A. S., Tan, K. H., Aslfattahi, N., Arifutzzaman, A., Saidur, R., & Al-Sulaiman, F. A. (2020). Optical, stability and energy performance of water-based MXene nanofluids in hybrid PV/thermal solar systems. Solar Energy, 204, 32–47.

  • Ahmadi, K., Khan Mohammadi, S., Bahiraei, M., & Bach, Q. V. (2020). Heat transfer assessment of turbulent nanofluid flow in a circular pipe fitted with elliptical-cut twisted tape inserts. Journal of Thermal Analysis and Calorimetry, 147, 727–740.

    Article  Google Scholar 

  • Ahmed, F., Khanam, A., Samylingam, L., Aslfattahi, N., & Saidur, R. (2022). Assessment of thermo-hydraulic performance of MXene-based nanofluid as coolant in a dimpled channel: a numerical approach. Journal of Thermal Analysis and Calorimetry, 147(22), 12669–12692.

    Article  CAS  Google Scholar 

  • Akpinar, E. K., & Bieer, Y. (2005). Investigation of heat and exergy loss in a concentric double pipe exchanger equipped with swirl generators. International Journal of Thermal Sciences, 44(4), 598–607.

    Article  Google Scholar 

  • Amanuel, T., & Mishra, M. (2018). Investigation of thermohydraulic performance of triplex concentric-tube heat exchanger with CuO/water nanofluid: numerical approach. Heat Transfer—Asian Research, 7(8), 974–95.

    Article  Google Scholar 

  • Aulds, D. D., & Barron, R. F. (1967). Three-fluid heat exchanger effectiveness. International Journal of Heat and Mass Transfer, 10(10), 1457–1462.

    Article  CAS  Google Scholar 

  • Bahiraei, M., Mazaheri, N., & Rizehvandi, A. (2019). Application of a hybrid nanofluid containing graphene nanoplatelet–platinum composite powder in a triplex-tube heat exchanger equipped with inserted ribs. Applied Thermal Engineering, 149, 588–601.

    Article  CAS  Google Scholar 

  • Bahiraei, M., Foong, L. K., Hosseini, S., & Mazaheri, N. (2021). Predicting heat transfer rate of a ribbed triplex-tube heat exchanger working with nanofluid using neural network enhanced by advanced optimization algorithms. Powder Technology, 381, 459–476.

    Article  CAS  Google Scholar 

  • Bakthavatchalam, B., Habib, K., Saidur, R., Aslfattahi, N., Yahya, S. M., Rashedi, A., & Khanam, T. (2021). Optimization of thermophysical and rheo-logical properties of Mxeneion nanofluids for hybrid solar photo-voltaic/thermal systems. Nanomaterials, 11(2), 320.

    Article  CAS  Google Scholar 

  • Batmaz, E., & Sandeep, K. (2005). Calculation of overall heat transfer coefficients in a triplex tube heat exchanger. Heat and Mass Transfer, 41, 271–279.

    Google Scholar 

  • Behera, S. P., Ghosh, A., Nayak, S. K., Mishra, P. C., & Parashar, S. K. (2022). Thermal performance analysis and cfd investigation of tubular concentric heat exchanger by using nanofluids. In Biennial International Conference on Future Learning Aspects of Mechanical Engineering (pp 381–394).

  • Belahmadi, E., & Bessaih, R. (2018). Heat transfer and entropy generation analysis of Cu-water nanofluid in a vertical channel. World Journal of Engineering, 15(5), 604–613.

    Article  CAS  Google Scholar 

  • Chen, J., Müller-Steinhagen, H., & Duffy, G. G. (2001). Heat transfer enhancement in dimpled tubes. Applied Thermal Engineering, 21(5), 535–547.

    Article  CAS  Google Scholar 

  • Elsaid, A. M., Gomaa, A., & Mohamed, M. A. (2016). Experimental and numerical investigation of a triplex concentric-tube heat exchanger. Applied Thermal Engineering, 99, 1303–1315.

    Article  Google Scholar 

  • Elsaid, A. M., El-Said, E. M., Abdelaziz, G. B., Sharshir, S. W., El-Tahan, H. R., & AbdRaboo, M. F. (2021). Performance and exergy analysis of different perforated rib designs of triplex tubes heat exchanger employing hybrid nanofluids. International Journal of Thermal Sciences, 168, 107006.

    Article  CAS  Google Scholar 

  • Gaur, S. K., Sahoo, R. R., & Sarkar, J. (2024). Numerical investigation on assessing the influence of diverse-shaped hybrid nanofluids on thermal performance of triple tube heat exchanger. Powder Technology, 439, 119690.

    Article  CAS  Google Scholar 

  • Giovannoni, V., Sharma, R. N., & Raine, R. R. (2017). Numerical prediction of thermal performances in a concentric triplex tube heat exchanger. International Journal of Thermal Sciences, 120, 86–105.

    Article  CAS  Google Scholar 

  • Gnielinski, V. (2010). Heat transfer and pressure drop in helically coiled tubes. In Proceedings of the 8th International Heat Transfer Conference, San Francisco, Hemisphere, VDI Heat Atlas (p 696). Springer.

  • Gomaa, A., Aly, W. I. A., Elsaid, A. M., & Eid, E. I. (2012). Thermal performance of the chilled water spirally coiled finned tube in cross flow for air conditioning applications. Ain Shams Engineering Journal, 3(1), 49–59.

    Article  Google Scholar 

  • Gomaa, A., Halim, M. A., & Elsaid, A. M. (2016). Experimental and numerical investigations of a triplex concentric-tube heat exchanger. Applied Thermal Engineering, 99, 1303–1315.

    Article  Google Scholar 

  • Gomaa, A., Halim, M. A., & Elsaid, A. M. (2017). Enhancement of cooling characteristics and optimization of a triplex concentric-tube heat exchanger with inserted ribs. International Journal of Thermal Sciences, 120, 106–120.

    Article  Google Scholar 

  • Gugulothu, R., Sanke, N., Somanchi, N. S., Normalla, V., Akter, F., & Sunil, B. D. (2023). A numerical study of water based nanofluids in shell and tube heat exchanger. Energy Harvesting and Systems, 10(2), 365–375.

    Article  Google Scholar 

  • Gupta, S., Sharma, A., Singh, K., & Srivastava, K. K. (2013). Hydrodynamic and thermal study of water in narrow copper tube. Indian Chemical Engineer, 55(4), 294–306.

    Article  CAS  Google Scholar 

  • Heyhat, M. M., Kowsary, F., Rashidi, A. M., Momenpour, M. H., & Amrollahi, A. (2013). Experimental investigation of laminar convective heat transfer and pressure drop of water-based nanofluids in a fully developed flow regime. Experimental Thermal and Fluid Science, 44, 483–489.

    Article  CAS  Google Scholar 

  • Jawarkar, N. G., Shelake, G. D., & Kumar, S. (2023). Heat transfer enhancement of heat exchangers using nanofluids: A review of recent developments and future perspective. AIP Conference Proceedings, 2839(1).

  • Kumar, P. M., & Hariprasath, V. (2020). A review on triplex tube heat exchangers. Materials Today: Proceedings, 21, 584–587.

    Google Scholar 

  • Kumar, R., Chandra, P., & Singh, H. (2023). Experimental analysis of heat transfer in a Triplex tube heat exchanger with Spring turbulator using CuO/water nanofluid. Journal of Nanofluids, 12(2), 429–437.

    Article  Google Scholar 

  • Oni, T. O., & Paul, M. C. (2016). Numerical investigation of heat transfer and fluid flow of water through a circular tube induced with divers’ tape inserts. Applied Thermal Engineering, 98, 157–168.

    Article  Google Scholar 

  • Pourahmad, S., & Pesteei, S. M. (2010). Effectiveness-NTU analyses in a double tube heat exchanger equipped with wavy strip considering various angles. Energy Conversion and Management, 123, 462–469.

    Article  Google Scholar 

  • Quadir, G. A., Jarallah, S. S., Ahmed, N. S., & Badruddin, I. A. (2013). Experimental investigation of the performance of a triplex concentric pipe heat exchanger. International Journal of Heat and Mass Transfer, 62, 562–566.

    Article  Google Scholar 

  • Quadir, G. A., Badruddin, I. A., & Ahmed, N. S. (2014). Numerical investigation of the performance of a triplex concentric pipe heat exchanger. International Journal of Heat and Mass Transfer, 75, 165–172.

    Article  Google Scholar 

  • Radulesdu, S., Negoita, I., & Onutu, I. (2012). Heat transfer coefficient solver for a triplex concentric-tube heat exchanger in transition regime. Revista de Chimie, 63, 820–824.

    Google Scholar 

  • Saeid, N. H., & Seetharamu, K. N. (2006). Finite element analysis for co-current and counter-current parallel flow three-fluid heat exchanger. International Journal of Numerical Methods for Heat & Fluid Flow, 16(3), 324–337.

    Article  Google Scholar 

  • Sahoo, R. R., & Srivastava, K. (2023). Thermo-hydraulic effect of a convergent-divergent cold channel using MXene nanofluid for thermoelectric-based waste heat recovery system. Heat and Mass Transfer, 12, 1–3.

    Google Scholar 

  • Sarkar, J. (2011). A critical review on convective heat transfer correlations of nanofluids. Renewable and Sustainable Energy Reviews, 15(6), 3271–3277.

    Article  CAS  Google Scholar 

  • Sarkar, J., Ghosh, P., & Adil, A. (2015). A review on hybrid nanofluids: Recent research, development and applications. Renewable and Sustainable Energy Reviews, 43, 164–177.

    Article  CAS  Google Scholar 

  • Sekulic, D. P., & Kmecko, I. (1995). Three-fluid cross-flow heat exchanger effectiveness revisited. Journal of Heat Transfer, 117, 2.

    Article  Google Scholar 

  • Sekulic, D. P., & Kmecko, I. (1995). Three-fluid crossflow heat exchanger effectiveness. Journal of Heat Transfer, 117, 226–229.

    Article  CAS  Google Scholar 

  • Sharma, D. K., Das, N., Singh, S. K., & Pandey, K. M. (2022). Experimental investigation on triplex concentric tube heat exchanger. Materials Today: Proceedings, 49, 1684–1688.

    Google Scholar 

  • Sorlie, T. (1962). Three-fluid heat exchanger design theory counter-and parallel-flow. Stanford University.

    Google Scholar 

  • Talebian, R., & Talebi, M. (2023). An experimental study on pressure Drop of CNT/water nanofluid in a triplex-tube heat exchanger. Journal of Computational & Applied Research in Mechanical Engineering (JCARME), 12(2), 225–236.

    Google Scholar 

  • Tavakoli, M., & Soufivand, M. R. (2023). Performance evaluation criteria and entropy generation of hybrid nanofluid in a shell-and-tube heat exchanger with two different types of cross-sectional baffles. Engineering Analysis with Boundary Elements, 150, 272–284.

    Article  Google Scholar 

  • Tiwari, A. K., Javed, S., Oztop, H. F., Said, Z., & Pandya, N. S. (2021). Experimental and numerical investigation on the thermal performance of triplex tube heat exchanger equipped with different inserts with WO3/water nanofluid under turbulent condition. International Journal of Thermal Sciences, 164, 106861.

    Article  CAS  Google Scholar 

  • Ünal, A. (1998). Theoretical analysis of triplex concentric-tube heat exchangers Part 1: Mathematical modelling. International Communications in Heat and Mass Transfer, 25(7), 949–958.

    Article  Google Scholar 

  • Unal, A. (2003). Effectiveness-NTU relations for triplex concentric-tube heat exchangers. International Communications in Heat and Mass Transfer, 30(2).

  • Valladares, G. O. (2004). Numerical simulation of triplex concentric-tube heat exchangers. International Journal of Thermal Sciences, 43(10), 979–991.

    Article  Google Scholar 

  • Versteeg, H., & Malalasekera, W. (1995). An introduction to computational fluid dynamics, the Finite Volume Method (1st ed.). Longman Group Ltd.

  • Wanga, Z., Wua, Z., Hanc, F., Wadsod, L., & Sunden, B. (2018). Experimental comparativeevaluation of a graphene nanofluid coolant in miniature plate heat exchanger. International Journal of Thermal Sciences, 130, 148–156.

    Article  Google Scholar 

  • Webb, R. L. (1981). Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. International Journal of Heat and Mass Transfer, 24, 715–726.

    Article  Google Scholar 

  • Xu, K., Bo, R., & Meng, H. (2014). A thermal performance factor for evaluation of active engine cooling with asymmetric heating. Applied Thermal Engineering, 73, 351–356.

    Article  CAS  Google Scholar 

  • Zhang, L., Guo, H., Wu, J., & Du, W. (2012). Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators. Heat and Mass Transfer, 48, 1113–1124.

    Article  CAS  Google Scholar 

  • Zhenbin, H., **aoming, F., Zhengguo, Z., & Xuenong, G. (2016). Numerical investigation on performance comparison of non-Newtonian fluid flow in vertical heat exchangers combined helical baffle with elliptic and circular tubes. Applied Thermal Engineering, 100, 84–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Sahoo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, S.K., Sahoo, R.R. & Sarkar, J. Numerical investigation on thermohydraulic and exergy performance enhancement for triplex concentric tube heat exchanger using MXene nanofluids. Int J Energ Water Res (2024). https://doi.org/10.1007/s42108-024-00290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42108-024-00290-3

Keywords

Navigation