Log in

Direct-to-indirect map** for optimal low-thrust trajectories

  • Research Article
  • Published:
Astrodynamics Aims and scope Submit manuscript

Abstract

Optimal, many-revolution spacecraft trajectories are challenging to solve. A connection is made for a class of models between optimal direct and indirect solutions. For transfers that minimize thrust-acceleration-squared, primer vector theory maps direct, many-impulsive-maneuver trajectories to the indirect, continuous-thrust-acceleration equivalent. The map** algorithm is independent of how the direct solution is obtained and requires only a solver for a boundary value problem and its partial derivatives. A Lambert solver is used for the two-body problem in this work. The map** is simple because the impulsive maneuvers and co-states share the same linear space around an optimal trajectory. For numerical results, the direct coast-impulse solutions are demonstrated to converge to the indirect continuous solutions as the number of impulses and segments increases. The two-body design space is explored with a set of three many-revolution, many-segment examples changing semimajor axis, eccentricity, and inclination. The first two examples involve a small change to either semimajor axis or eccentricity, and the third example is a transfer to geosynchronous orbit. Using a single processor, the optimization runtime is seconds to minutes for revolution counts of 10 to 100, and on the order of one hour for examples with up to 500 revolutions. Any of these thrust-acceleration-squared solutions are good candidates to start a homotopy to a higher-fidelity minimization problem with practical constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morante, D., Sanjurjo Rivo, M., Soler, M. A survey on low-thrust trajectory optimization approaches. Aerospace, 2021, 8(3): 88.

    Article  Google Scholar 

  2. Petropoulos, A. E., Tarzi, Z. B., Lantoine, G., Dargent, T., Epenoy, R. Techniques for designing many-revolution electric-propulsion trajectories. Advances in the Astronautical Sciences, 2014, 152(3): 2367–2386.

    Google Scholar 

  3. Junkins, J. L., Taheri, E. Exploration of alternative state vector choices for low-thrust trajectory optimization. Journal of Guidance, Control, and Dynamics, 2019, 42(1): 47–64.

    Article  ADS  Google Scholar 

  4. Scheel, W. A., Conway, B. A. Optimization of very-low-thrust, many-revolution spacecraft trajectories. Journal of Guidance, Control, and Dynamics, 1994, 17(6): 1185–1192.

    Article  ADS  Google Scholar 

  5. Yang, G. Direct optimization of low-thrust many-revolution Earth-orbit transfers. Chinese Journal of Aeronautics, 2009, 22(4): 426–433.

    Article  Google Scholar 

  6. Jimenez-Lluva, D., Root, B. Hybrid optimization of low-thrust many-revolution trajectories with coasting arcs and longitude targeting for propellant minimization. Acta Astronautica, 2020, 177: 232–245.

    Article  ADS  Google Scholar 

  7. Kluever, C. A., Oleson, S. R. Direct approach for computing near-optimal low-thrust Earth-orbit transfers. Journal of Spacecraft and Rockets, 1998, 35(4): 509–515.

    Article  ADS  Google Scholar 

  8. Wu, D., Wang, W., Jiang, F. H., Li, J. F. Minimum-time low-thrust many-revolution geocentric trajectories with analytical costates initialization. Aerospace Science and Technology, 2021, 119: 107146.

    Article  Google Scholar 

  9. Graham, K. F., Rao, A. V. Minimum-time trajectory optimization of low-thrust Earth-orbit transfers with eclipsing. Journal of Spacecraft and Rockets, 2016, 53(2): 289–303.

    Article  ADS  Google Scholar 

  10. Shannon, J. L., Ozimek, M. T., Atchison, J. A., Hartzell, C. M. Q-law aided direct trajectory optimization of many-revolution low-thrust transfers. Journal of Spacecraft and Rockets, 2020, 57(4): 672–682.

    Article  ADS  Google Scholar 

  11. Wu, D., Cheng, L., Jiang, F. H., Li, J. F. Analytical costate estimation by a reference trajectory-based least-squares method. Journal of Guidance, Control, and Dynamics, 2022, 45(8): 1529–1537.

    Article  ADS  Google Scholar 

  12. Restrepo, R. L., Russell, R. P. Shadow trajectory model for fast low-thrust indirect optimization. Journal of Spacecraft and Rockets, 2017, 54(1): 44–54.

    Article  ADS  Google Scholar 

  13. Sims, J., Flanagan, S. Preliminary design of low-thrust interplanetary missions. In: Proceedings of the 9th AAS/AIAA Astrodynamics Specialist Conference, Girdwood, AK, USA, 1999: AAS 99-338.

  14. Sims, J., Finlayson, P., Rinderle, E., Vavrina, M., Kowalkowski, T. Implementation of a low-thrust trajectory optimization algorithm for preliminary design. In: Proceedings of the 16th AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, Colorado, USA, 2006: AIAA 2006-6746.

  15. McConaghy, T. T., Debban, T. J., Petropoulos, A. E., Longuski, J. M. Design and optimization of low-thrust trajectories with gravity assists. Journal of Spacecraft and Rockets, 2003, 40(3): 380–387.

    Article  ADS  Google Scholar 

  16. Izzo, D. PyGMO and PyKEP: Open source tools for massively parallel optimization in astrodynamics (the case of interplanetary trajectory optimization). In: Proceedings of the 5th International Conference on Astrodynamics Tools and Techniques, the Netherlands, 2012.

  17. Englander, J. A., Conway, B. A., Williams, T. Automated mission planning via evolutionary algorithms. Journal of Guidance, Control, and Dynamics, 2012, 35(6): 1878–1887.

    Article  ADS  Google Scholar 

  18. Englander, J., Conway, B., Williams, T. Automated interplanetary trajectory planning. In: Proceedings of the 22nd AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, Minnesota, USA, 2012: AIAA 2012-4517.

  19. Englander, J. A., Ellison, D. H., Conway, B. A. Global optimization of low-thrust, multiple-flyby trajectories at medium and medium-high fidelity. In: Proceedings of the 24th AIAA/AAS Space-Flight Mechanics Meeting, Santa Fe, New Mexico, USA, 2014: 1539–1558.

  20. Williams, J., Senent, J. S., Ocampo, C., Mathur, R., Davis, E. C. Overview and software architecture of the Copernicus trajectory design and optimization system. In: Proceedings of the 4th International Conference on Astrodynamics Tools and Techniques, Madrid, Spain, 2010.

  21. Whiffen, G. J. Static/dynamic control for optimizing a useful objective. U.S. Patent 6,496,741, 2002.

  22. Whiffen, G. Mystic: Implementation of the static dynamic optimal control algorithm for high-fidelity, low-thrust trajectory design. In: Proceedings of the 16th AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, Colorado, USA, 2006: AIAA 2006-6741.

  23. Lantoine, G., Russell, R. P. A hybrid differential dynamic programming algorithm for constrained optimal control problems. Part 1: Theory. Journal of Optimization Theory and Applications, 2012, 154(2): 382–417.

    Article  MathSciNet  Google Scholar 

  24. Lantoine, G., Russell, R. P. A hybrid differential dynamic programming algorithm for constrained optimal control problems. Part 2: Application. Journal of Optimization Theory and Applications, 2012, 154(2): 382–417.

    Article  MathSciNet  Google Scholar 

  25. Aziz, J. D., Parker, J. S., Scheeres, D. J., Englander, J. A. Low-thrust many-revolution trajectory optimization via differential dynamic programming and a Sundman transformation. The Journal of the Astronautical Sciences, 2018, 65(2): 205–228.

    Article  ADS  Google Scholar 

  26. Russell, R. P. On the solution to every Lambert problem. Celestial Mechanics and Dynamical Astronomy, 2019, 131(11): 50.

    Article  MathSciNet  ADS  Google Scholar 

  27. Russell, R. P. ivLam. (1.06). Zenodo, 2019. Information on https://doi.org/10.5281/zenodo.3479924.

  28. Ottesen, D., Russell, R. P. Unconstrained direct optimization of spacecraft trajectories using many embedded Lambert problems. Journal of Optimization Theory and Applications, 2021, 191(2): 634–674.

    Article  MathSciNet  Google Scholar 

  29. Ottesen, D., Russell, R. P. Piecewise Sundman transformation for spacecraft trajectory optimization using many embedded Lambert problems. Journal of Spacecraft and Rockets, 2022, 59(4): 1044–1061.

    Article  ADS  Google Scholar 

  30. Betts, J. T. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193–207.

    Article  MathSciNet  ADS  Google Scholar 

  31. Shirazi, A., Ceberio, J., Lozano, J. A. Spacecraft trajectory optimization: A review of models, objectives, approaches and solutions. Progress in Aerospace Sciences, 2018, 102: 76–98.

    Article  ADS  Google Scholar 

  32. Lawden, D. F. Optimal Trajectories for Space Navigation (Vol. 3). London: Butterworths and Co., 1963: 5–69.

    Google Scholar 

  33. Prussing, J. E. Illustration of the primer vector in time-fixed, orbit transfer. AIAA Journal, 1969, 7(6): 1167–1168.

    Article  ADS  Google Scholar 

  34. Jezewski, D. J. Primer vector theory and applications. Technical Report, NASA TR R-454. Lyndon B. Johnson Space Center, Houston, Texas, USA, 1975. Information on https://ntrs.nasa.gov/search.jsp?R=19760004112.

  35. Lin, H. Y., Zhao, C. Y. Optimization of low-thrust trajectories using an indirect shooting method without guesses of initial costates. Chinese Astronomy and Astrophysics, 2012, 36(4): 389–398.

    Article  ADS  Google Scholar 

  36. Marec, J. P. Optimal Space Trajectories (Vol. 1). Elsevier, 1979.

  37. Taheri, E., Junkins, J. L. How many impulses redux. The Journal of the Astronautical Sciences, 2020, 67(2): 257–334.

    Article  ADS  Google Scholar 

  38. Enright, P. J., Conway, B. A. Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. Journal of Guidance, Control, and Dynamics, 1992, 15(4): 994–1002.

    Article  ADS  Google Scholar 

  39. Fahroo, F., Ross, I. M. Costate estimation by a Legendre pseudospectral method. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 270–277.

    Article  ADS  Google Scholar 

  40. Hager, W. W. Runge-Kutta methods in optimal control and the transformed adjoint system. Numerische Mathematik, 2000, 87(2): 247–282.

    Article  MathSciNet  Google Scholar 

  41. Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., Rao, A. V. Direct trajectory optimization and costate estimation via an orthogonal collocation method. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1435–1440.

    Article  ADS  Google Scholar 

  42. Gong, Q., Ross, I. M., Kang, W., Fahroo, F. Connections between the covector map** theorem and convergence of pseudospectral methods for optimal control. Computational Optimization and Applications, 2008, 41(3): 307–335.

    Article  MathSciNet  Google Scholar 

  43. Yam, C. H., Longuski, J. Reduced parameterization for optimization of low-thrust gravity-assist trajectories: Case studies. In: Proceedings of the 16th AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, Colorado, USA, 2006: AIAA 2006-6744.

  44. Lee, D. H., Bang, H. Efficient initial costates estimation for optimal spiral orbit transfer trajectories design. Journal of Guidance, Control, and Dynamics, 2009, 32(6): 1943–1947.

    Article  ADS  Google Scholar 

  45. Ranieri, C. L., Ocampo, C. A. Indirect optimization of spiral trajectories. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1360–1366.

    Article  ADS  Google Scholar 

  46. Ayyanathan, P. J., Taheri, E. Mapped adjoint control transformation method for low-thrust trajectory design. Acta Astronautica, 2022, 193: 418–431.

    Article  ADS  Google Scholar 

  47. Thorne, J. D., Hall, C. D. Minimum-time continuous-thrust orbit transfers using the Kustaanheimo-Stiefel transformation. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 836–838.

    Article  ADS  Google Scholar 

  48. Cerf, M. Fast solution of minimum-time low-thrust transfer with eclipses. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(7): 2699–2714.

    Article  Google Scholar 

  49. Haberkorn, T., Martinon, P., Gergaud, J. Low thrust minimum-fuel orbital transfer: A homotopic approach. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 1046–1060.

    Article  ADS  Google Scholar 

  50. Jiang, F. H., Baoyin, H. X., Li, J. F. Practical techniques for low-thrust trajectory optimization with homotopic approach. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 245–258.

    Article  ADS  Google Scholar 

  51. Zhao, S. G., Zhang, J. R. Minimum-fuel station-change for geostationary satellites using low-thrust considering perturbations. Acta Astronautica, 2016, 127: 296–307.

    Article  ADS  Google Scholar 

  52. Haberkorn, T., Trélat, E. Convergence results for smooth regularizations of hybrid nonlinear optimal control problems. SIAM Journal on Control and Optimization, 2011, 49(4): 1498–1522.

    Article  MathSciNet  Google Scholar 

  53. Bertrand, R., Epenoy, R. New smoothing techniques for solving bang-bang optimal control problems? Numerical results and statistical interpretation. Optimal Control Applications and Methods, 2002, 23(4): 171–197.

    Article  MathSciNet  Google Scholar 

  54. Taheri, E., Junkins, J. L. Generic smoothing for optimal bang-off-bang spacecraft maneuvers. Journal of Guidance, Control, and Dynamics, 2018, 41(11): 2470–2475.

    Article  ADS  Google Scholar 

  55. Taheri, E., Junkins, J. L., Kolmanovsky, I., Girard, A. A novel approach for optimal trajectory design with multiple operation modes of propulsion system, part 1. Acta Astronautica, 2020, 172: 151–165.

    Article  ADS  Google Scholar 

  56. Pan, X., Pan, B. F. Practical homotopy methods for finding the best minimum-fuel transfer in the circular restricted three-body problem. IEEE Access, 2020, 8: 47845–47862.

    Article  Google Scholar 

  57. Wu, D., Cheng, L., Jiang, F. H., Li, J. F. Rapid generation of low-thrust many-revolution Earth-center trajectories based on analytical state-based control. Acta Astronautica, 2021, 187: 338–347.

    Article  ADS  Google Scholar 

  58. Zhang, J. R., **ao, Q., Li, L. C. Solution space exploration of low-thrust minimum-time trajectory optimization by combining two homotopies. Automatica, 2023, 148: 110798.

    Article  MathSciNet  Google Scholar 

  59. Ottesen, D., Russell, R. P. Direct-to-indirect map** for optimal low-thrust trajectories. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Charlotte, North Carolina, USA, 2022: AAS 22-727.

  60. Pontryagin, L. S. The Mathematical Theory of Optimal Processes. London: Routledge, 1986: 17–21.

    Google Scholar 

  61. Hull, D. Optimal Control Theory for Applications. New York: Springer, 2003: 167–170.

    Book  Google Scholar 

  62. Battin, R. H. Lambert’s problem revisited. AIAA Journal, 1977, 15(5): 707–713.

    Article  MathSciNet  ADS  Google Scholar 

  63. Gooding, R. H. A procedure for the solution of Lambert’s orbital boundary-value problem. Celestial Mechanics and Dynamical Astronomy, 1990, 48(2): 145–165.

    Article  ADS  Google Scholar 

  64. Izzo, D. Revisiting Lambert’s problem. Celestial Mechanics and Dynamical Astronomy, 2015, 121(1): 1–15.

    Article  MathSciNet  ADS  Google Scholar 

  65. Russell, R. P. Complete Lambert solver including second-order sensitivities. Journal of Guidance, Control, and Dynamics, 2022, 45(2): 196–212.

    Article  ADS  Google Scholar 

  66. Arora, N., Russell, R. P., Strange, N., Ottesen, D. Partial derivatives of the solution to the Lambert boundary value problem. Journal of Guidance, Control, and Dynamics, 2015, 38(9): 1563–1572.

    Article  ADS  Google Scholar 

  67. Broyden, C. G. The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA Journal of Applied Mathematics, 1970, 6(1): 76–90.

    Article  Google Scholar 

  68. Fletcher, R. A new approach to variable metric algorithms. The Computer Journal, 1970, 13(3): 317–322.

    Article  Google Scholar 

  69. Goldfarb, D. A family of variable-metric methods derived by variational means. Mathematics of Computation, 1970, 24(109): 23–26.

    Article  MathSciNet  Google Scholar 

  70. Shanno, D. F. Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation, 1970, 24(111): 647–656.

    Article  MathSciNet  Google Scholar 

  71. Lawson, C. L., Hanson, R. J., Kincaid, D. R., Krogh, F. T. Basic linear algebra subprograms for Fortran usage. ACM Transactions on Mathematical Software, 1979, 5(3): 308–323.

    Article  Google Scholar 

  72. Fehlberg, E. Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with stepsize control. Technical Report, NASA TR R-287. George C. Marshall Space Flight Center, Huntsville, Alabama, USA, 1968. Information on https://ntrs.nasa.gov/citations/19680027281.

  73. Gill, P. E., Murray, W., Wright, M. H. Practical Optimization. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2019: 306–307

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ottesen.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

David Ottesen holds his bachelor, master, and Ph.D. degrees from The University of Texas at Austin, USA, in aerospace engineering. His Ph.D. thesis was under the guidance of Dr. Ryan P. Russell, working on and writing about many interesting spacecraft trajectory optimization problems. He has had the opportunity to work at Johns Hopkins University Applied Physics Laboratory, Emergent Space Technologies, and NASA Ames Research Center. Today, he is an astrodynamics engineer at LeoLabs in Menlo Park, CA, USA, hel** deliver the data needed to safely operate in low-Earth orbit. E-mail: davidottesen@utexas.edu

Ryan P. Russell is a professor in the Department of Aerospace Engineering and Engineering Mechanics at The University of Texas at Austin, USA. His research areas of interest include orbit mechanics, numerical optimization, and trajectory design. Russell began his professional career at NASA’s Jet Propulsion Laboratory as a member of the Guidance, Navigation and Control section where he worked as a mission designer and navigation analyst for a variety of space flight projects. He served on the faculty of Georgia Institute of Technology, USA, before joining the UT ASE/EM faculty in 2012. He is a fellow of the American Astronautical Society, an associate fellow of AIAA, and is the former chair of the AIAA Astrodynamics Technical Committee. He has authored or co-authored more than two hundred technical publications and is an associate editor for three esteemed journals. E-mail: ryan.russell@austin.utexas.edu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ottesen, D., Russell, R.P. Direct-to-indirect map** for optimal low-thrust trajectories. Astrodyn 8, 27–46 (2024). https://doi.org/10.1007/s42064-023-0164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42064-023-0164-6

Keywords

Navigation