Log in

“Untrapped choice procedures” and their computational complexities

  • Original Article
  • Published:
Iran Journal of Computer Science Aims and scope Submit manuscript

Abstract

In this paper, we define two versions of Untrapped set (weak and strong Untrapped sets) over a finite set of alternatives. These versions, considered as choice procedures, extend the notion of Untrapped set in a more general case (i.e. when alternatives are not necessarily comparable). We show that they all coincide with Top cycle choice procedure for tournaments. In case of weak tournaments, the strong Untrapped set is equivalent to Getcha choice procedure and the Weak Untrapped set is exactly the Untrapped set studied in the litterature. We also present a polynomial-time algorithm for computing each set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Tournaments are always supposed to be asymmetric. We suppose without lost of generality that tournament may be reflexive.

  2. Pseudo tournaments should not be confound with partial tournaments for which binary relations are asymmetric and not necessarily reflexive.

  3. Getcha set (resp. Gocha set) is also called Smith set (resp. Schwartz set) in the literature.

  4. Sanni (2010) has defined two extensions of the Gocha procedure and two extensions of the Getcha procedure.

  5. Duggan [18] also shows that WUt(R) is the union of all maximal sets of all maximal acyclic subrelations (w.r.t. set inclusion) of R.

References

  1. Eliaz, K., Ok, E.A.: Indifference or indecisiveness? choice-theoretic foundations of incomplete preferences. Games Econ. Behav. 56(1), 61–86 (2006)

    Article  MathSciNet  Google Scholar 

  2. Tapkı, İ.G.: Revealed incomplete preferences under status-quo bias. Math. Soc. Sci. 53(3), 274–283 (2007)

    Article  MathSciNet  Google Scholar 

  3. Gorno, L.: The structure of incomplete preferences. Econ. Theor. 66(1), 159–185 (2018)

    Article  MathSciNet  Google Scholar 

  4. Ureña, R., Chiclana, F., Morente-Molinera, J.A., Herrera-Viedma, E.: Managing incomplete preference relations in decision making: a review and future trends. Inf. Sci. 302, 14–32 (2015)

    Article  MathSciNet  Google Scholar 

  5. Zhi, H., Chao, H.: Three-way concept analysis for incomplete formal contexts. Mathematical Problems in Engineering, London (2018)

    Book  Google Scholar 

  6. Hill, B.: Incomplete preferences and confidence. J. Math. Econ. 65, 83–103 (2016)

    Article  MathSciNet  Google Scholar 

  7. Albers, S., Bichler, M., Brandt, F., Gritzmann, P., Kolisch, R.: Algorithmic economics und operations research. Informatik-Spektrum 40(2), 165–171 (2017)

    Article  Google Scholar 

  8. Schwartz, T.: Rationality and the myth of the maximum, pp. 97–117. Noûs, Bengaluru (1972)

    Google Scholar 

  9. Copeland, A.: A reasonable social welfare function. Seminar on applications of mathematics to social sciences. University of michigan, Ann Arbor (1951)

    Google Scholar 

  10. Miller, N.R.: A new solution set for tournaments and majority voting: Further graph-theoretical approaches to the theory of voting. Am. J. Polit. Sci. 24(1), 68–96 (1980)

    Article  Google Scholar 

  11. Laslier, J.-F.: Tournament solutions and majority voting. Springer, Berlin (1997)

    Book  Google Scholar 

  12. Peris, J.E., Subiza, B.: Condorcet choice correspondences for weak tournaments. Soc. Choice Welfare 16(2), 217–231 (1999)

    Article  MathSciNet  Google Scholar 

  13. Sanni, M.: Etude des procédures de choix fondées sur des relations binaires. PhD thesis, Université de Paris Dauphine, (2010)

  14. Aziz, H., Brandt, F., Elkind, E., Skowron, P.: Computational social choice: The first ten years and beyond. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. Computer science today, (2019)

  15. Brandt, F., Brill, M., Harrenstein, P.: Extending tournament solutions. Soc. Choice Welfare 51(2), 193–222 (2018)

    Article  MathSciNet  Google Scholar 

  16. Aziz, H., Brill, M., Fischer, F., Harrenstein, P., Lang, J., Seedig, H.G.: Possible and necessary winners of partial tournaments. J. Artif. Intell. Res. 54, 493–534 (2015)

    Article  MathSciNet  Google Scholar 

  17. Brandt, F., Fischer, F., Harrenstein, P.: The computational complexity of choice sets. Math. Logic Quart. 55(4), 444–459 (2009)

    Article  MathSciNet  Google Scholar 

  18. Duggan, J.: A systematic approach to the construction of non-empty choice sets. Soc. Choice Welfare 28(3), 491–506 (2007)

    Article  MathSciNet  Google Scholar 

  19. Schwartz, T.: The logic of collective choice. Columbia University Press, Columbia (1986)

    Book  Google Scholar 

  20. Deb, R.: On schwartz’s rule. J. Econ. Theory 16(1), 103–110 (1977)

    Article  MathSciNet  Google Scholar 

  21. Lacomme, P., Prins, C., Sevaux, M.: Algorithmes de graphes. Eyrolles, Paris (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Balewa Sanni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Proposition 2

Appendix: Proof of Proposition 2

  1. 1.

    \(WUt(R)\subseteq SUt(R)\). Let R be a pseudo-tournament defined on A. \(x \in WUt(R) \Rightarrow \forall y\in A,\) not(yPx) or \(xP^*y \Rightarrow \forall y\in A,\) not(yPx) or \(xR^*y \Rightarrow x \in SUt(R)\).

  2. 2.

    \(Gocha(R)\subseteq SUt(R)\). According to proof 4. and 1., we have,, respectively \(Gocha(R)\subseteq WUt(R)\) and \(WUt(R)\subseteq SUt(R)\).

  3. 3.

    \(Getcha(R)\subseteq SUt(R)\). Let R be a pseudo tournament defined on A and let \(x \in Getcha(R)\). Suppose \(x\notin SUt(R)\). Then \( \exists y\in A\) such that \(y \tilde{T} x\). i.e. yPx and \(not(x R^* y)\). A contradiction since \(x \in Getcha(R)\) and \(Getcha(R) = M(R^*)\).

  4. 4.

    \(Gocha(R)\subseteq WUt(R)\). Let R be a pseudo-tournament defined on A and let \(x \in Gocha(R)\). Suppose \(x\notin WUt(R)\). Then \( \exists y\in A\) such that yTx, i.e. yPx and \(not(x P^* y)\): which is not possible since \(x \in Gocha(R)\) and \(Gocha(R) = M(P^*)\).

  5. 5.

    \(WUt(R)\emptyset Getcha(R)\). Let us show that any minimal weak dominant set intersects the weak Untrapped set. Consider a minimal weak dominant set \(D'\) and suppose that \(WUt(R)\bigcap D'=\emptyset \). Then for \(x\in D'\) we have \(x \notin WUt(R)\). So \(\exists y \in WUt(R)\) such that yPx, which is not possible because \(y \notin D'\) and \(x\in D'\). The above example shows that none of Getcha and WUt choice procedure is included in the other.

  6. 6.

    \(Gocha(R)\emptyset Getcha(R)\). Note that every weak dominant set is a weak undominated set. So every minimal weak dominant set contains at least one minimal weak undominated set. We then have \(Gocha(R)\bigcap Getcha(R)\ne \emptyset \). The above example shows that none of Getcha and Gocha choice procedure is included in the other.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanni, M.B. “Untrapped choice procedures” and their computational complexities. Iran J Comput Sci 3, 233–238 (2020). https://doi.org/10.1007/s42044-020-00073-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42044-020-00073-z

Keywords

Navigation