Log in

Applying unsupervised machine learning to counterterrorism

  • Research Article
  • Published:
Journal of Computational Social Science Aims and scope Submit manuscript

Abstract

To advance the agenda in counterterrorism, this work demonstrates how analysts can combine unsupervised machine learning, exploratory data analysis, and statistical tests to discover features associated with different terrorist motives. A new empirical text mining method created a “motive” field in the Global Terrorism Database to enable associative relationship mining among features that characterize terrorist events. The methodology incorporated K-means co-clustering, three methods of non-linear projection, and two spatial association tests to reveal statistically significant relationships between terrorist motives, tactics, and targets. Planners and investigators can replicate the approach to distill knowledge from big datasets to help advance the state of the art in counterterrorism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Publicly available.

References

  1. Abrahms, M., & Conrad, J. (2017). The strategic logic of credit claiming: A new theory for anonymous terrorist attacks. Security Studies, 26(2), 279–304. https://doi.org/10.1080/09636412.2017.1280304

    Article  Google Scholar 

  2. Adnan, M., & Rafi, M. (2015). Extracting patterns from global terrorist dataset (GTD) using co-clustering approach. Journal of Independent Studies and Research, 13(1), 7. https://doi.org/10.31645/jisrc/(2015).13.1.0002

    Article  Google Scholar 

  3. Aggarwal, C. C. (2015). Data mining. Springer International Publishing.

    Google Scholar 

  4. Agresti, A. (2018). Statistical methods for the social sciences (5th ed.). Pearson.

    Google Scholar 

  5. Aleroud, A., & Gangopadhyay, A. (2018). Multimode co-clustering for analyzing terrorist networks. Information Systems Frontiers, 20(5), 1053–1074. https://doi.org/10.1007/s10796-016-9712-4

    Article  Google Scholar 

  6. Ammar, J. (2019). Cyber Gremlin: Social networking, machine learning and the global war on Al-Qaida-and IS-inspired terrorism. International Journal of Law and Information Technology, 27(3), 238–265. https://doi.org/10.1093/IJLIT/EAZ006

    Article  Google Scholar 

  7. Anselin, L. (1995). Local Indicators of Sspatial Association—LISA. Geographical Analysis, 27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x

    Article  Google Scholar 

  8. Atsa’am, D. D., Wario, R., & Okpo, F. E. (2020). A new terrorism categorization based on casualties and consequences using hierarchical clustering. Journal of Applied Security Research. https://doi.org/10.1080/19361610.2020.1769461

    Article  Google Scholar 

  9. Bayar, Y., & Gavriletea, M. (2018). Peace, terrorism and economic growth in Middle East and North African countries. Quality & Quantity, 52(5), 2373–2392. https://doi.org/10.1007/S11135-017-0671-8

    Article  Google Scholar 

  10. Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I. W., Ng, L. G., et al. (2019). Dimensionality reduction for visualizing single-cell data using UMAP. Nature Biotechnology, 37(1), 38–44. https://doi.org/10.1038/nbt.4314

    Article  Google Scholar 

  11. Campedelli, G., Bartulovic, M., & Carley, K. (2021). Learning future terrorist targets through temporal meta-graphs. Scientific Reports. https://doi.org/10.1038/s41598-021-87709-7

    Article  Google Scholar 

  12. Campedelli, G., Cruickshank, I., & Carley, K. (2021). Multi-modal networks reveal patterns of operational similarity of terrorist organizations. Terrorism and Political Violence. https://doi.org/10.1080/09546553.2021.2003785

    Article  Google Scholar 

  13. Campedelli, G., Cruickshank, I., & Carley, M. K. (2019). A complex networks approach to find latent clusters of terrorist groups. Applied Network Science. https://doi.org/10.1007/s41109-019-0184-6

    Article  Google Scholar 

  14. Clauset, A., & Wiegel, F. W. (2010). A generalized aggregation-disintegration model for the frequency of severe terrorist attacks. Journal of Conflict Resolution, 54(1), 179–197. https://doi.org/10.1177/0022002709352452

    Article  Google Scholar 

  15. Conlon, S., Abrahams, A., & Simmons, L. (2015). Terrorism information extraction from online reports. Journal of Computer Information Systems, 55(3), 20–28. https://doi.org/10.1080/08874417.2015.11645768

    Article  Google Scholar 

  16. Curia, F. (2020). Unsupervised hybrid algorithm to detect anomalies for predicting terrorists attacks. International Journal of Computer Applications, 176(35), 975:8887. https://doi.org/10.5120/ijca2020920432

    Article  Google Scholar 

  17. Ding, F., Ge, Q., Jiang, D., Fu, J., & Hao, M. (2017). Understanding the dynamics of terrorism events with multiple-discipline datasets and machine learning approach. PLoS ONE, 12(6), e0179057.

    Article  Google Scholar 

  18. Enders, W., Parise, G. F., & Sandler, T. (1992). A time-series analysis of transnational terrorism: Trends and cycles. Defence and Peace Economics, 3(4), 305–320. https://doi.org/10.1080/10430719208404739

    Article  Google Scholar 

  19. Feng, Y., Wang, D., Yin, Y., Li, Z., & Hu, Z. (2020). An XGBoost-based casualty prediction method for terrorist attacks. Complex & Intelligent Systems, 6, 1–20.

    Article  Google Scholar 

  20. Guo, D., Liao, K., & Morgan, M. (2007). Visualizing patterns in a global terrorism incident database. Environment and Planning B: Planning and Design, 34(5), 767–784. https://doi.org/10.1068/b3305

    Article  Google Scholar 

  21. Hao, M., Jiang, D., Ding, F., Fu, J., & Chen, S. (2019). Simulating spatio-temporal patterns of terrorism incidents on the Indochina peninsula with GIS and the random forest method. ISPRS International Journal of Geo-Information, 8(3), 133.

    Article  Google Scholar 

  22. Heiser, W. J. (1985). Multidimensional scaling by optimizing goodness of fit to a smooth hypothesis. University of Leiden.

    Google Scholar 

  23. Huamaní, E. L., Alicia, A. M., & Roman-Gonzalez, A. (2020). Machine learning techniques to visualize and predict terrorist attacks worldwide using the global terrorism database. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/IJACSA.2020.0110474

    Article  Google Scholar 

  24. Hung, B., Jayasumana, A., & Bandara, V. (2018). INSiGHT: A system to detect violent extremist radicalization trajectories in dynamic graphs. Data & Knowledge Engineering, 118, 52–70. https://doi.org/10.1016/J.DATAK.2018.09.003

    Article  Google Scholar 

  25. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning with applications in R (Vol. 112). Springer. https://doi.org/10.1007/978-1-4614-7138-7

    Book  Google Scholar 

  26. Krasmann, S., & Hentschel, C. (2019). 'Situational awareness’: Rethinking security in times of urban terrorism. Security Dialogue, 50(2), 181–197. https://doi.org/10.1177/0967010618819598

    Article  Google Scholar 

  27. LaFree, G. (2010). The Global Terrorism Database (GTD) Accomplishments and Challenges. Perspectives on Terrorism, 4(1), 24–46. Retrieved from http://www.jstor.org/stable/26298434

  28. Loia, V., & Orciuoli, F. (2019). Understanding the composition and evolution of terrorist group networks: A rough set approach. Future Generation Computer Systems, 101, 983–992. https://doi.org/10.1016/j.future.2019.07.049

    Article  Google Scholar 

  29. Lu, P., Zhang, Z., Li, M., Chen, D., & Yang, H. (2020). Agent-based modeling and simulations of terrorist attacks combined with Stampedes. Knowledge-Based Systems, 205, 106291. https://doi.org/10.1016/j.knosys.2020.106291

    Article  Google Scholar 

  30. Maaten, L. V., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(Nov 2008), 2579–2605.

    Google Scholar 

  31. Madeira, S. C., & Oliveira, A. L. (2004). Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1), 24–45. https://doi.org/10.1109/TCBB.2004.2

    Article  Google Scholar 

  32. Martin, I. W. (2008). The permanent tax revolt: How the property tax transformed American politics. Stanford University Press.

    Book  Google Scholar 

  33. Mashechkin, I. V., Petrovskiy, M. I., Tsarev, D. V., & Chikunov, M. N. (2019). Machine learning methods for detecting and monitoring extremist information on the internet. Programming and Computer Software, 45(3), 99–115. https://doi.org/10.1134/S0361768819030058

    Article  Google Scholar 

  34. Miller, E. (2020). Global Terrorism Overview: Terrorism in 2019. College Park, Maryland: University of Maryland. https://www.start.umd.edu/pubs/START_GTD_GlobalTerrorismOverview2019_July2020.pdf

  35. Mishra, N., Swagatika, S., & Singh, D. (2020). An intelligent framework for analysing terrorism actions using Cloud. In P. Srikanta, W. H. I. Andrew, T. Madjid, & J. Vipul (Eds.), New paradigm in decision science and management. Advances in intelligent systems and computing (Vol. 1005, pp. 225–235). Springer. https://doi.org/10.1007/978-981-13-9330-3_21

    Chapter  Google Scholar 

  36. Naouali, S., Salem, S. B., & Chtourou, Z. (2020). Uncertainty mode selection in categorical clustering using the rough set theory. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2020.113555

    Article  Google Scholar 

  37. Nizamani, S., & Memon, N. (2012). Detecting terrorism incidence type from news summary. In T. Khine Soe (Ed.), Advanced information technology in education. Advances in intelligent and soft computing (Vol. 126, pp. 95–102). Springer. https://doi.org/10.1007/978-3-642-25908-1_14

    Chapter  Google Scholar 

  38. Opiyo, O. P., Mukisa, M. T., & Ratemo, M. C. (2019). An evaluation of hybrid machine learning classifier models for identification of terrorist groups in the aftermath of an attack. International Research Journal of Engineering and Technology, 6(9), 1856–1864.

    Google Scholar 

  39. Pruyt, E., & Kwakkel, J. (2014). Radicalization under deep uncertainty: A multi-model exploration of activism, extremism, and terrorism. System Dynamics Review. https://doi.org/10.1002/sdr.1510

    Article  Google Scholar 

  40. Python, A., Bender, A., Nandi, A., Hancock, P., Arambepola, R., Brandsch, J., & Lucas, T. (2021). Predicting non-state terrorism worldwide. Science Advances. https://doi.org/10.1126/sciadv.abg4778

    Article  Google Scholar 

  41. Salem, S. B., & Naouali, S. (2016). Pattern recognition approach in multidimensional databases: Application to the global terrorism database. International Journal of Advanced Computer Science and Applications (IJACSA). https://doi.org/10.14569/IJACSA.2016.070838

    Article  Google Scholar 

  42. Schaller, R. R. (1997). Moore’s law: Past, present and future. IEEE Spectrum, 34(6), 52–59. https://doi.org/10.1109/6.591665

    Article  Google Scholar 

  43. Strang, K., & Sun, Z. (2017). Analyzing relationships in terrorism big data using Hadoop and statistics. Journal of Computer Information Systems, 57(1), 67–75. https://doi.org/10.1080/08874417.2016.1181497

    Article  Google Scholar 

  44. Sun, A., Naing, M., Lim, E., & Lam, W. (2003). Using support vector machines for terrorism information extraction. In C. Hsinchun, M. Richard, D. Z. Daniel, D. Chris, S. Jenny, & M. Therani (Eds.), Intelligence and security informatics. ISI 2003. Lecture notes in computer science. (Vol. 2665). Springer. https://doi.org/10.1007/3-540-44853-5_1

    Chapter  Google Scholar 

  45. Tolan, G. M., & Soliman, O. S. (2015). An experimental study of classification algorithms for terrorism prediction. International Journal of Knowledge Engineering-IACSIT, 1(2), 107–112.

    Article  Google Scholar 

  46. Uddin, M. I., Zada, N., Aziz, F., Saeed, Y., Zeb, A., Shah, S. A., et al. (2020). Prediction of future terrorist activities using deep neural networks. Complexity. https://doi.org/10.1155/2020/1373087

    Article  Google Scholar 

  47. USCB. (2019). TIGER/line shapefiles technical documentation. United States Census Bureau (USCB).

    Google Scholar 

  48. Venna, J., & Kaski, S. (2001). Neighborhood preservation in nonlinear projection methods: An experimental study. In D. Georg, B. Horst, & H. Kurt (Eds.), International conference on artificial neural networks. 2130 (pp. 485–491). Springer. https://doi.org/10.1007/3-540-44668-0_68

    Chapter  Google Scholar 

  49. Wall, C. (2021). The (Non) Deus-Ex Machina: A realistic assessment of machine learning for countering domestic terrorism. Studies in Conflict and Terrorism. https://doi.org/10.1080/1057610X.2021.1987656

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Bridgelall.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bridgelall, R. Applying unsupervised machine learning to counterterrorism. J Comput Soc Sc 5, 1099–1128 (2022). https://doi.org/10.1007/s42001-022-00164-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42001-022-00164-w

Keywords

Navigation