Log in

The complex and bidirectional interaction between sex hormones and exercise performance in team sports with emphasis on soccer

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

A constant topic reported in the lay press is the effect of sex hormones on athletic performance and their abuse by athletes in their effort to enhance their performance or to either boost or sidestep their hard, protracted, and demanding training regimens. However, an issue that it is almost never mentioned is that the athletic training itself affects the endogenous production of androgens and estrogens, while also being affected by them. Among sports, soccer is a particularly demanding activity, soccer players needing to possess high levels of endurance, strength, and both aerobic and anaerobic capacity, with the very great physiological, metabolic, physical, and psychological exertion required of the players being both influenced by sex steroids and, reciprocally, affecting sex steroid levels. This review focuses on the currently available knowledge regarding the complex relationship between athletic training and competition and sex steroid hormone adaptation to the demands of the exercise effort. In the first part of the review, we will examine the effects of endogenous testosterone, estrogen, and adrenal androgens on athletic performance both during training and in competition. In the second part, we will explore the reciprocal effects of exercise on the endogenous sex hormones while briefly discussing the recent data on anabolic androgenic steroid abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kraemer WJ, Rogol AD (2005) The endocrine system in sports and exercise. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  2. Di Luigi L, Romanelli F, Sgrò P, Lenzi A (2012) Andrological aspects of physical exercise and sport medicine. Endocrine 42:278–284

    Article  CAS  PubMed  Google Scholar 

  3. Wierman ME (2007) Sex steroid effects at target tissues: mechanisms of action. Adv Physiol Educ 31:26–33

    Article  PubMed  Google Scholar 

  4. Borer KT (2003) Exercise endocrinology. Human Kinetics, Champaign, p 272

    Google Scholar 

  5. Tremblay MS, Copeland JL, Van Helder W (2004) Effect of training status and exercise mode on endogenous steroid hormones in men. J Appl Physiol 96:531–539

    Article  CAS  PubMed  Google Scholar 

  6. Bhasin SW, Storer TW, Berman N et al (1996) The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med 335:1–7

    Article  CAS  PubMed  Google Scholar 

  7. Cardinale M, Stone MH (2006) Is testosterone influencing explosive performance? J Strength Cond Res 20:103–107

    PubMed  Google Scholar 

  8. Ferrando AA, Tipton KD, Doyle D, Phillips SM, Cortiella J, Wolfe RR (1998) Testosterone injection stimulates net protein synthesis but not tissue amino acid transport. Am J Physiol Endocrinol Metab 275:E864–E871

    Article  CAS  Google Scholar 

  9. Griggs RC, Kingston W, Jozefowicz RF, Herr BE, Forbes G, Halliday D (1989) Effect of testosterone on muscle mass and muscle protein synthesis. J Appl Physiol 66:498–503

    Article  CAS  PubMed  Google Scholar 

  10. Sinha-Hikim I, Artaza J, Woodhouse L et al (2002) Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am J Physiol Endocrinol Metab 283:E154–E164

    Article  CAS  PubMed  Google Scholar 

  11. Bleisch WV, Harrelson AL, Luine VN (1982) Testosterone increases acetylcholine receptor number in the “levator ani” muscle of the rat. J Neurobiol 13:153–161

    Article  CAS  PubMed  Google Scholar 

  12. Bosco C, Tihanyl J, Rivalta L et al (1996) Hormonal responses in strenuous jum** effort. Jpn J Physiol 46:93–98

    Article  CAS  PubMed  Google Scholar 

  13. Bosco C, Tihanyi J, Viru A (1996) Relationships between field fitness test and basal serum testosterone and cortisol levels in soccer players. Clin Physiol 16:317–322

    Article  CAS  PubMed  Google Scholar 

  14. Aagaard P, Andersen JL (1998) Correlation between contractile strength and myosin heavy chain isoform composition in human skeletal muscle. Med Sci Sport Exercise:1217–1222

  15. Perez-Gomez J, Rodriguez GV, Ara I et al (2008) Role of muscle mass on sprint performance: gender differences? Eur J Appl Physiol 102:685–694

    Article  PubMed  Google Scholar 

  16. Blanco CE, Popper P, Micevych P (1997) Anabolic-androgenic steroid induced alterations in choline acetyltransferase messenger RNA levels of spinal cord motoneurons in the male rat. Neuroscience 78:873–882

    Article  CAS  PubMed  Google Scholar 

  17. Leslie M, Forger NG, Breedlove SM (1991) Sexual dimorphism and androgen effects on spinal motoneurons innervating the rat flexor digitorum brevis. Brain Res 561:269–273

    Article  CAS  PubMed  Google Scholar 

  18. Missitzi J, Geladas N, Klissouras V (2004) Heritability in neuromuscular coordination: implications for motor control strategies. Med Sci Sports Exerc 36:233–240

    Article  PubMed  Google Scholar 

  19. Pereira R, Machado M, Miragaya dos Santos M, Pereira L, Sampaio-Jorge F (2008) Muscle activation sequence compromises vertical jump performance. Serb J Sports Sci 2:85–90

    Google Scholar 

  20. Ecker T (1996) Basic biomechanics of running. In: Eckert T (ed) Basic track & field biomechanics. Tafnews Press, Mountain View, pp 57–63

    Google Scholar 

  21. Dhesi JK, Jackson SH, Bearne LM et al (2004) Vitamin D supplementation improves neuromuscular function in older people who fall. Age Ageing 33:589–595

    Article  PubMed  Google Scholar 

  22. Tudor OB (1992) Periodization training for sports. Human Kinetics, Champaign, IL

    Google Scholar 

  23. Avgoustinaki PD, Mitsopoulou E, Chlouverakis G, Triantafillou T, Venihaki M, Koukouli S, Margioris AN (2012) Sex steroids and personality traits in the middle luteal phase of healthy normally menstruating young professional women. Hormones (Athens) 11:333–343

    Article  Google Scholar 

  24. Cunningham RL, Lumia AR, McGinnis MY (2012) Androgen receptors, sex behavior, and aggression. Neuroendocrinology 96:131–140

    Article  CAS  PubMed  Google Scholar 

  25. Baucom DH, Besch PK, Callahan S (1985) Relation between testosterone concentration, sex role identity, and personality among females. J Pers Soc Psychol 48:1218–1226

    Article  CAS  PubMed  Google Scholar 

  26. Al-Ayadhi LY (2004) Sex hormones, personality characters and professional status among Saudi females. Saudi Med J 25:711–716

    PubMed  Google Scholar 

  27. Prochazka H, Anderberg UM, Oreland L, Knorring LV, Agren H (2003) Self-rated aggression related to serum testosterone and platelet MAO activity in female patients with the fibromyalgia syndrome. World J Biol Psychiatry 4:35–41

    Article  PubMed  Google Scholar 

  28. McGinnis MY (2004) Anabolic androgenic steroids and aggression: studies using animal models. Ann N Y Acad Sci 1036:399–415

    Article  CAS  PubMed  Google Scholar 

  29. Nelson RJ, Chiavegatto S (2001) Molecular basis of aggression. Trends Neurosci 24:713–719

    Article  CAS  PubMed  Google Scholar 

  30. Bhasin S, Woodhouse L, Storer TW, Woodhouse L, Storer TW (2003) Androgen effects on body composition. Growth Hormon IGF Res 13:S63–S71

    Article  CAS  Google Scholar 

  31. De Maddalena C, Vodo S, Petroni A, Aloisi AM (2012) Impact of testosterone on body fat composition. Cell Physiol 227:3744–3748

    Article  CAS  Google Scholar 

  32. Bhasin S, Buckwalter JG (2001) Testosterone supplementation in older men: a rational idea whose time has not yet come. J Androl 22:718–731

    CAS  PubMed  Google Scholar 

  33. Ghiani G, Marongiu E, Melis F et al (2015) Body composition changes affect energy cost of running during 12 months of specific diet and training in amateur athletes. Appl Physiol Nutr Metab 40:938–944

    Article  PubMed  Google Scholar 

  34. Caldwell BP, Peters DM (2009) Seasonal variation in physiological fitness of a semiprofessional soccer team. J Strength Cond Res 23:1370–1377

    Article  PubMed  Google Scholar 

  35. Kvorning T, Andersen M, Brixen K, Madsen K (2006) Suppression of endogenous testosterone production attenuates the response to strength training: a randomized placebo-controlled and blinded intervention study. Am J Physiol Endocrinol Metab 291:E1325–E1332

    Article  CAS  PubMed  Google Scholar 

  36. Fragala MS, Kraemer WJ, Denegar CR et al (2011) Neuroendocrine-immune interactions and responses to exercise. Sports Med 41:621–639

    Article  PubMed  Google Scholar 

  37. Mayer M, Rosen F (1977) Interaction of glucocorticoids and androgens with skeletal muscle. Metabolism 26:937–962

    Article  CAS  PubMed  Google Scholar 

  38. Beggs LA, Yarrow JF, Conover CF et al (2014) Testosterone alters iron metabolism and stimulates red blood cell production independently of dihydrotestosterone. Am J Physiol Endocrinol Metab 307:E456–E461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guezennec CY, Ferre P, Serrurier B, Merino D, Aymonod M, Pesquies PC (1984) Metabolic effects of testosterone during prolonged physical exercise and fasting. Eur J Appl Physiol Occup Physiol 52:300–304

    Article  CAS  PubMed  Google Scholar 

  40. Xu X, De Pergola G, Björntorp P (1990) The effects of androgens on the regulation of lipolysis in adipose precursor cells. Endocrinology 126:1229–1234

    Article  CAS  PubMed  Google Scholar 

  41. Sato K, Iemitsu M, Aizawa K, Ajisaka R (2008) Testosterone and DHEA activate the glucose metabolism-related signaling pathway in skeletal muscle. Am J Physiol Endocrinol Metab 294:E961–E968

    Article  CAS  PubMed  Google Scholar 

  42. Kadi F (2008) Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br J Pharmacol 154:522–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pediaditakis I, Iliopoulos I, Theologidis I et al (2015) Dehydroepiandrosterone: an ancestral ligand of neurotrophin receptors. Endocrinology 156:16–23

    Article  CAS  PubMed  Google Scholar 

  44. Sato K, Iemitsu M (2015) Exercise and sex steroid hormones in skeletal muscle. J Steroid Biochem Mol Biol 145:200–205

    Article  CAS  PubMed  Google Scholar 

  45. Aizawa K, Iemitsu M, Maeda S et al (2010) Acute exercise activates local bioactive androgen metabolism in skeletal muscle. Steroids 75:219–223

    Article  CAS  PubMed  Google Scholar 

  46. Sato K, Iemitsu M, Matsutani K, Kurihara T, Hamaoka T, Fujita S (2014) Resistance training restores muscle sex steroid hormone steroidogenesis in older men. FASEB J 28:1891–1897

    Article  CAS  PubMed  Google Scholar 

  47. Huang YJ, Chen MT, Fang CL, Lee WC, Yang SC, Kuo CH (2006) A possible link between exercise-training adaptation and dehydroepiandrosterone sulfate—an oldest-old female study. Int J Med Sci 3:141–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Velardo A, Pantaleoni M, Valerio L, Barini A, Marrama P (1991) Influence of exercise on dehydroepiandrosterone sulphate and delta 4-androstenedione plasma levels in man. Exp Clin Endocrinol 97:99–101

    Article  CAS  PubMed  Google Scholar 

  49. Bonen A, Keizer HA (1987) Pituitary, ovarian, and adrenal hormone responses to marathon running. Int J Sports Med 8:161–167

    Article  CAS  PubMed  Google Scholar 

  50. Baker ER, Mathur RS, Kirk RF, Landgrebe SC, Moody LO, Williamson HO (1982) Plasma gonadotropins, prolactin, and steroid hormone concentrations in female runners immediately after a long-distance run. Fertil Steril 38:38–41

    Article  CAS  PubMed  Google Scholar 

  51. Cumming DC, Brunsting LA, Strich G, Ries AL, Rebar RW (1986) Reproductive hormone increases in response to acute exercise in men. Med Sci Sports Exerc 18:369–373

    Article  CAS  PubMed  Google Scholar 

  52. Yarrow JF, McCoy SC, Borst SE (2012) Intracrine and myotrophic roles of 5α-reductase and androgens: a review. Med Sci Sports Exerc 44:818–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Valenti G, Denti L, Maggio M et al (2004) Effect of DHEAS on skeletal muscle over the life span: the InCHIANTI study. J Gerontol A Biol Sci Med Sci 59:466–472

    Article  PubMed  Google Scholar 

  54. O’Donnell AB, Travison TG, Harris SS, Tenover JL, McKinlay JB (2006) Testosterone, dehydroepiandrosterone, and physical performance in older men: results from the Massachusetts Male Aging Study. J Clin Endocrinol Metab 91:425–431

    Article  CAS  PubMed  Google Scholar 

  55. Stárka L, Dušková M, Hill M (2014) Dehydroepiandrosterone: a neuroactive steroid. J Steroid Biochem Mol Biol 145:254–260

    Article  CAS  PubMed  Google Scholar 

  56. Hernández-Morante JJ, Pérez-de-Heredia F, Luján JA, Zamora S, Garaulet M (2008) Role of DHEA-S on body fat distribution: gender- and depot-specific stimulation of adipose tissue lipolysis. Steroids 73:209–215

    Article  CAS  PubMed  Google Scholar 

  57. Ho CT, Su CL, Chen MT et al (2008) Aging effects on glycemic control and inflammation for politicians in Taiwan. Chin J Phys 51:402–407

    Google Scholar 

  58. Ozkan A, Kayıhan G, Köklü Y et al (2012) The relationship between body composition, anaerobic performance and sprint ability of amputee soccer players. J Hum Kin 35:141–146

    Article  Google Scholar 

  59. Frye CA, Lacey EH (1999) The neurosteroids DHEA and DHEAS may influence cognitive performance by altering affective state. Physiol Behav 66:85–92

    Article  CAS  PubMed  Google Scholar 

  60. Moffat SD, Zonderman AB, Harman SM, Blackman MR, Kawas C, Resnick SM (2000) The relationship between longitudinal declines in dehydroepiandrosterone sulfate concentrations and cognitive performance in older men. Arch Intern Med 160:2193–2198

    Article  CAS  PubMed  Google Scholar 

  61. Hermida RC, Halberg F, del Pozo F (1985) Chronobiologic pattern discrimination of plasma hormones, notably DHEA-S and TSH, classifies an expansive personality. Chronobiologia 12:105–136

    CAS  PubMed  Google Scholar 

  62. Brown GA, Vukovich M, King DS (2006) Testosterone prohormone supplements. Med Sci Sports Exerc 38:1451–1461

    Article  CAS  PubMed  Google Scholar 

  63. Leder B, Longcope C, Catlin D, Shoenfeld AB, Finkelstein JS (2000) Oral androstenedione administration and serum testosterone concentrations in young men. JAMA 283:779–782

    Article  CAS  PubMed  Google Scholar 

  64. Tiidus PM (2003) Influence of estrogen on skeletal muscle damage, inflammation, and repair. Exerc Sport Sci Rev 31:40–44

    Article  PubMed  Google Scholar 

  65. Bär PR, Amelink GJ, Oldenburg B, Blankenstein MA (1988) Prevention of exercise-induced muscle membrane damage by oestradiol. Life Sci 42:2677–2681

    Article  PubMed  Google Scholar 

  66. Tarnopolsky M (1999) Gender differences in metabolism: practical and nutritional implications. CRC, Boca Raton

    Google Scholar 

  67. Mair J, Koller A, Artner-Dworzak E et al (1992) Effects of exercise on plasma myosin heavy chain fragments and MRI of skeletal muscle. J Appl Physiol 72:656–663

    Article  CAS  PubMed  Google Scholar 

  68. Nosaka K, Clarkson PM, Apple FS (1992) Time course of serum protein changes after strenuous exercise of the forearm flexors. J Lab Clin Med 119:183–188

    CAS  PubMed  Google Scholar 

  69. Clarkson PM, Sayers S (1999) Gender differences in exercise-induced muscle damage. In: Tarnopolsky MA (ed) Gender differences in metabolism. CRC, Boca Raton, pp 283–300

    Google Scholar 

  70. Stupka NS, Lowther S, Chorneyko K, Bourgeois J, Hogben C, Tarnopolsky MA (2000) Gender differences in muscle inflammation following eccentric exercise. J Appl Physiol 89:2325–2332

    Article  CAS  PubMed  Google Scholar 

  71. Kendall B, Eston R (2002) Exercise-induced muscle damage and the potential protective role of estrogen. Sports Med 32:103–123

    Article  PubMed  Google Scholar 

  72. **ng D, Miller A, Novak L et al (2004) Estradiol and progestins differentially modulate leukocyte infiltration after vascular injury. Circulation 109:234–241

    Article  CAS  PubMed  Google Scholar 

  73. Tiidus PM, Bombardier E (1999) Oestrogen attenuates post-exercise myeloperoxidase activity in skeletal muscle of male rats. Acta Physiol Scand 166:85–90

    Article  CAS  PubMed  Google Scholar 

  74. Kendrick ZV, Steffen CA, Rumsey WL, Goldberg DI (1987) Effect of estradiol on tissue glycogen metabolism in exercised oophorectomized rats. J Appl Physiol 63:492–496

    Article  CAS  PubMed  Google Scholar 

  75. Pedersen SB, Kristensen K, Hermann PA, Katzenellenbogen JA, Richelsen B (2004) Estrogen controls lipolysis by up-regulating alpha2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor alpha. Implications for the female fat distribution. J Clin Endocrinol Metab 89:1869–1878

    Article  CAS  PubMed  Google Scholar 

  76. Hackney AC, Sinning WE, Bruot BC (1988) Reproductive hormonal profiles of endurance-trained and untrained males. Med Sci Sports Exerc 20:60–65

    Article  CAS  PubMed  Google Scholar 

  77. Arce JC, De Souza MJ (1993) Exercise and male factor infertility. Sports Med 15:146–169

    Article  CAS  PubMed  Google Scholar 

  78. Collomp K, Buisson C, Lasne F, Collomp R (2015) DHEA, physical exercise and do**. J Steroid Biochem Mol Biol 145:206–212

    Article  CAS  PubMed  Google Scholar 

  79. Heaney JL, Carroll D, Phillips AC (2013) DHEA, DHEA-S and cortisol responses to acute exercise in older adults in relation to exercise training status and sex. Age (Dordr) 35:395–405

    Article  CAS  Google Scholar 

  80. Fellmann N, Coudert J, Jarrige JF et al (1985) Effects of endurance training on the androgenic response to exercise in man. Int J Sports Med 6:215–219

    Article  CAS  PubMed  Google Scholar 

  81. Karkoulias K, Habeos I, Charokopos N et al (2008) Hormonal responses to marathon running in non-elite athletes. Eur J Intern Med 19:598–601

    Article  CAS  PubMed  Google Scholar 

  82. Hackney AC, Fahrner CL, Gulledge TP (1998) Basal reproductive hormonal profiles are altered in endurance trained men. J Sports Med Phys Fitness 38:138–141

    CAS  PubMed  Google Scholar 

  83. Häkkinen K, Kraemer WJ, Pakarinen A et al (2002) Effects of heavy resistance/power training on maximal strength, muscle morphology, and hormonal response patterns in 60-75-year-old men and women. Can J Appl Physiol 27:213–231

    Article  PubMed  Google Scholar 

  84. Vingren JL, Kraemer WJ, Hatfield DL et al (1985) 2008 Effect of resistance exercise on muscle steroidogenesis. J Appl Physiol 105:1754–1760

    Article  Google Scholar 

  85. Aizawa K, Akimoto T, Inoue H et al (2003) Resting serum dehydroepiandrosterone sulfate level increases after 8-week resistance training among young females. Eur J Appl Physiol 90:575–580

    Article  CAS  PubMed  Google Scholar 

  86. Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35:339–361

    Article  PubMed  Google Scholar 

  87. Baker JR, Benben MG, Anderson MA, Bemben DA (2006) Effects of age on testosterone responses to resistance exercise and musculoskeletal variables in men. J Strength Cond Res 20:874–881

    PubMed  Google Scholar 

  88. Cadore E, Lhullier F, Brentano M et al (2008) Correlations between serum and salivary hormonal concentrations in response to resistance exercise. J Sports Sci 26:1067–1072

    Article  PubMed  Google Scholar 

  89. Jensen CE, Wiswedel K, McLoughlin J, van der Spuy Z (1995) Prospective study of hormonal and semen profiles in marathon runners. Fertil Steril 64:1189–1196

    Article  CAS  PubMed  Google Scholar 

  90. Hawkins VN, Foster-Schubert K, Chubak J et al (2008) Effect of exercise on serum sex hormones in men: a 12-month randomized clinical trial. Med Sci Sports Exerc 40:223–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vinogradova OL, Medvednik RS, Gitel' EP, Saraev OA, Maĭrorova EM (1992) Lipoprotein and hormonal changes in rowers as a result of six months of training. Fiziol Cheloveka 18:131–138

    CAS  PubMed  Google Scholar 

  92. Cangemi R, Friedmann AJ, Holloszy JO, Fontana L (2010) Long-term effects of calorie restriction on serum sex-hormone concentrations in men. Aging Cell 9:236–242

    Article  CAS  PubMed  Google Scholar 

  93. Keizer HA, Kuipers H, de Haan J et al (1987) Effect of a 3-month endurance training program on metabolic and multiple hormonal responses to exercise. Int J Sports Med 8:154–160

    Article  PubMed  Google Scholar 

  94. Bullen BA, Skrinar GS, Beitins IZ et al (1984) Endurance training effects on plasma hormonal responsiveness and sex hormone excretion. J Appl Physiol Respir Environ Exerc Physiol 56:1453–1463

    CAS  PubMed  Google Scholar 

  95. De Meirleir KL, Baeyens L, L’Hermite-Baleriaux M, L’Hermite M, Hollmann W (1985) Exercise-induced prolactin release is related to anaerobiosis. J Clin Endocrinol Metab 60:1250–1252

    Article  PubMed  Google Scholar 

  96. Urhausen A, Gabriel H, Kindermann W (1995) Blood hormones as markers of training stress and overtraining. Sports Med 20:251–276

    Article  CAS  PubMed  Google Scholar 

  97. Häkkinen K, Pakarinen A, Alén M, Komi PV (1985) Serum hormones during prolonged training of neuromuscular performance. Eur J Appl Physiol Occup Physiol 53:287–293

    Article  PubMed  Google Scholar 

  98. Willoughby DS, Spillane M, Schwarz N (2014) Heavy resistance training and supplementation with the alleged testosterone booster NMDA has no effect on body composition, muscle performance, and serum hormones associated with the hypothalamo-pituitary-gonadal axis in resistance-trained males. J Sports Sci Med 13:192–199

    PubMed  PubMed Central  Google Scholar 

  99. Willoughby DS, Leutholtz B (2013) D-aspartic acid supplementation combined with 28 days of heavy resistance training has no effect on body composition, muscle strength, and serum hormones associated with the hypothalamo-pituitary-gonadal axis in resistance-trained men. Nutr Res 33:803–810

    Article  CAS  PubMed  Google Scholar 

  100. Hall HL, Flynn MG, Carroll KK et al (1999) Effects of intensified training and detraining on testicular function. Clin J Sport Med 9:203–208

    Article  CAS  PubMed  Google Scholar 

  101. Bhasin S, Berman N, Swerdloff RS (1994) Follicle-stimulating hormone (FSH) escape during chronic gonadotropin-releasing hormone (GnRH) agonist and testosterone treatment. J Androl 15:386–391

    CAS  PubMed  Google Scholar 

  102. Wilkinson SB, Tarnopolsky MA, Grant EJ, Correia CE, Phillips SM (2006) Hypertrophy with unilateral resistance exercise occurs without increases in endogenous anabolic hormone concentration. Eur J Appl Physiol 98:546–555

    Article  CAS  PubMed  Google Scholar 

  103. Busso T, Häkkinen K, Pakarinen A, Kauhanen H, Komi PV, Lacour JR (1992) Hormonal adaptations and modelled responses in elite weightlifters during 6 weeks of training. Eur J Appl Physiol Occup Physiol 64:381–386

    Article  CAS  PubMed  Google Scholar 

  104. Hakkinen K, Pakarinen A, Alen M, Kauhanen H, Komi PV (1987) Relationships between training volume, physical performance capacity, and serum hormone concentrations during prolonged training in elite weight lifters. Int J Sports Med 8:61–65

    Article  CAS  PubMed  Google Scholar 

  105. Raastad T, Glomsheller T, Bjøro T, Hallén J (2001) Changes in human skeletal muscle contractility and hormone status during 2 weeks of heavy strength training. Eur J Appl Physiol 84:54–63

    Article  CAS  PubMed  Google Scholar 

  106. Hakkinen K, Pakarinen A, Alen M, Kauhanen H, Komi PV (1988) Neuromuscular and hormonal adaptations in athletes to strength training in two years. J Appl Physiol 65:2406–2412

    Article  CAS  PubMed  Google Scholar 

  107. Mallo J, Navarro E (2008) Physical load imposed on soccer players during small-sided training games. J Sports Med Phys Fitness 48:166–171

    CAS  PubMed  Google Scholar 

  108. Ekblom B (1986) Applied physiology of soccer. Sports Med 3:50–60

    Article  CAS  PubMed  Google Scholar 

  109. Bangsbo (1994) The physiology of soccer with special reference to intense intermittent exercise. Acta Physiol Scand 619:1–155

    CAS  Google Scholar 

  110. Stølen T, Chamari K, Castagna C, Wisløff U (2005) Physiology of soccer: an update. Sports Med 35:501–536

    Article  PubMed  Google Scholar 

  111. Bangsbo J, Norregaard L, Thorso F (1991) Activity profile of competition soccer. Can J Sport Sci 16:110–116

    CAS  PubMed  Google Scholar 

  112. Reilly T, Thomas V (1976) A motion analysis of work-rate in different positional roles in professional football match-play. J Hum Mov Stud 2:87–89

    Google Scholar 

  113. Hoffman JR, Kang J, Ratamess NA, Faigenbaum AD (2005) Biochemical and hormonal responses during an intercollegiate football season. Med Sci Sports Exerc 37(7):1237–1241

    Article  CAS  PubMed  Google Scholar 

  114. Celani MF, Grandi M (1989) The pituitary-testicular axis in non-professional soccer players. Exp Clin Endocrinol 94:244–252

    Article  CAS  PubMed  Google Scholar 

  115. Ispirlidis I, Fatouros IG, Jamurtas AZ et al (2008) Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med 18:423–431

    Article  PubMed  Google Scholar 

  116. Sotiropoulos A, Papapanagiotou A, Souglis A, Giosos G, Bogdanis G (2008) Changes in hormonal and lipid profile after a soccer match in male amateur players. Serb J Sports Sci 2:31–36

    Google Scholar 

  117. Slewinska-Lisowska M, Majda J (2002) Hormone plasma levels from pituitary-gonadal axis in performance athletes after the 400 m run. J Sports Med Phys Fitness 42:243–249

    Google Scholar 

  118. Bosco C, Komi PV (1979) Mechanical characteristics and fiber composition of human leg extensor muscles. Eur J Appl Physiol Occup Physiol Aug 41:275–284

    Article  CAS  Google Scholar 

  119. Costill DL, Daniels J, Evans W, Fink W, Krahenbuhl G, Saltin B (1976) Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 40:149–154

    Article  CAS  PubMed  Google Scholar 

  120. Kraemer WJ, French DN, Paxton NJ et al (2004) Changes in exercise performance and hormonal concentrations over a big ten soccer season in starters and nonstarters. J Strength Cond Res 18:121–128

    PubMed  Google Scholar 

  121. Gorostiaga EM, Izquierdo M, Ruesta M, Iribarren J, González-Badillo JJ, Ibáñez J (2004) Strength training effects on physical performance and serum hormones in young soccer players. Eur J Appl Physiol 91:698–707

    Article  CAS  PubMed  Google Scholar 

  122. Arruda AF, Aoki MS, Freitas CG, Spigolon LM, Franciscon C, Moreira A (2015) Testosterone concentration and lower limb power over an entire competitive season in elite young soccer players. J Strength Cond Res 29:3380–3385

    Article  PubMed  Google Scholar 

  123. Koundourakis NE, Androulakis N, Spyridaki EC et al (2014) Effect of different seasonal strength training protocols on circulating androgen levels and performance parameters in professional soccer players. Hormones (Athens) 13:104–118

    Article  Google Scholar 

  124. Koundourakis NE, Androulakis NE, Malliaraki N, Tsatsanis C, Venihaki M, Margioris AN (2014) Discrepancy between exercise performance, body composition, and sex steroid response after a six-week detraining period in professional soccer players. PLoS One 9:e87803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Aizawa K, Nakahori C, Akimoto T et al (2006) Changes of pituitary, adrenal and gonadal hormones during competition among female soccer players. J Sports Med Phys Fitness 46:322–327

    CAS  PubMed  Google Scholar 

  126. Edwards DA, Wetzel K, Wyner DR (2006) Intercollegiate soccer: saliva cortisol and testosterone are elevated during competition, and testosterone is related to status and social connectedness with team mates. Physiol Behav 87:135–143

    Article  CAS  PubMed  Google Scholar 

  127. Grandi M, Celani MF (1990) Effects of football on the pituitary-testicular axis (PTA): differences between professional and non-professional soccer players. Exp Clin Endocrinol 96:253–259

    Article  CAS  PubMed  Google Scholar 

  128. MacConnie SE, Barkan A, Lampman RM, Schork MA, Beitins IZ (1986) Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N Engl J Med 315:411–417

    Article  CAS  PubMed  Google Scholar 

  129. Silva JR, Ascensão A, Marques F, Seabra A, Rebelo A, Magalhães J (2013) Neuromuscular function, hormonal and redox status and muscle damage of professional soccer players after a high-level competitive match. Eur J Appl Physiol 113:2193–2201

    Article  CAS  PubMed  Google Scholar 

  130. Mohr M, Draganidis D, Chatzinikolaou A et al (2016) Muscle damage, inflammatory, immune and performance responses to three football games in 1 week in competitive male players. Eur J Appl Physiol 116:179–193

    Article  CAS  PubMed  Google Scholar 

  131. Lupo C, Baldi L, Bonifazi M et al (1985) Androgen levels following a football match. Eur J Appl Physiol Occup Physiol 54(5):494–496

    Article  CAS  PubMed  Google Scholar 

  132. Filaire E, Bernain X, Sagnol M, Lac G (2001) Preliminary results on mood state, salivary testosterone:cortisol ratio and team performance in a professional soccer team. Eur J Appl Physiol 86:179–184

    Article  CAS  PubMed  Google Scholar 

  133. Filaire E, Lac G, Pequignot JM (2003) Biological, hormonal, and psychological parameters in professional soccer players throughout a competitive season. Percept Mot Skills 97:1061–1072

    Article  PubMed  Google Scholar 

  134. Wood RI, Stanton SJ (2012) Testosterone and sport: current perspectives. Horm Behav 61:147–155

    Article  CAS  PubMed  Google Scholar 

  135. Carré JM (2009) No place like home: testosterone responses to victory depend on game location. Am J Hum Biol 21:392–394

    Article  PubMed  Google Scholar 

  136. Stanton SJ, Schultheiss OC (2009) The hormonal correlates of implicit power motivation. J Res Pers 43:942

    Article  PubMed  PubMed Central  Google Scholar 

  137. Maner JK, Miller SL, Schmidt NB, Eckel LA (2008) Submitting to defeat: social anxiety, dominance threat, and decrements in testosterone. Psychol Sci 19:764–768

    Article  PubMed  Google Scholar 

  138. Suay F, Salvador A, González-Bono E et al (1999) Effects of competition and its outcome on serum testosterone, cortisol and prolactin. Psychoneuroendocrinology 24:551–566

    Article  CAS  PubMed  Google Scholar 

  139. Salvador A, Costa R (2009) Co** with competition: neuroendocrine responses and cognitive variables. Neurosci Biobehav Rev 33:160–170

    Article  CAS  PubMed  Google Scholar 

  140. Van Anders SM, Watson NV (2007) Effects of ability- and chance-determined competition outcome on testosterone. Physiol Behav 90:634–642

    Article  CAS  PubMed  Google Scholar 

  141. Słowińska-Lisowska M, Jóźków P, Mędraś M (2006) Estimation of the total testosterone, sex hormones binding globuline (SHBG), dehydroepiandrosterone sulphate (DHEA-S) and cortisol during training mezocycles in basketball players. Medicina Sportiva 10:64–68, 2006

    Google Scholar 

  142. Batista Jr M, Santos TR, Romero F, et al 2005 Effects of Brazilian basketball season in pituitary-adrenal-gonadal responses in professional athletes. 10th Annual Congress, ECSS, Belgrade, Serbia

  143. Handziski Z, Maleska V, Petrovska S et al (2006) The changes of ACTH, cortisol, testosterone and testosterone/cortisol ratio in professional soccer players during a competition half-season. Bratisl Lek Listy 107:259–263

    CAS  PubMed  Google Scholar 

  144. Muscella A, Vetrugno C, Spedicato M, Stefàno E, Marsigliante S (2019) The effects of training on hormonal concentrations in young soccer players. J Cell Physiol. https://doi.org/10.1002/jcp.286731

  145. Duclos M, Corcuff JB, Arsac L et al (1998) Corticotroph axis sensitivity after exercise in endurance-trained athletes. Clin Endocrinol 48:493–501

    Article  CAS  Google Scholar 

  146. Bonifazi M, Sardella F, Lupo C (2000) Preparatory versus main competitions: differences in performances, lactate responses and pre-competition plasma cortisol concentrations in elite male swimmers. Eur J Appl Physiol 82:368–373

    Article  CAS  PubMed  Google Scholar 

  147. Hoogeveen AR, Zonderland ML (1996) 1996 relationships between testosterone, cortisol and performance in professional cyclists. Int J Sports Med 17:423–428

    Article  CAS  PubMed  Google Scholar 

  148. Salvador A, Suay F, González-Bono E, Serrano MA (2003) Anticipatory cortisol, testosterone and psychological responses to judo competition in young men. Psychoneuroendocrinology. 28:364–375

    Article  CAS  PubMed  Google Scholar 

  149. Carli G, Di Prisco CL, Martelli G, Viti A (1982) Hormonal changes in soccer players during an agonistic season. J Sports Med Phys Fitness 22:489–494

    CAS  PubMed  Google Scholar 

  150. Koundourakis NE 2014 The effects of different seasonal training programs in the production of the adrenal and the gonadal sex hormones. Ph.D. thesis. School of Medicine, University of Crete, Greece

  151. Dorfman RI, Shipley RA (1956) Androgens. Wiley, New York, pp 3–9

    Google Scholar 

  152. Labrie F, Belanger A, Cusan L, Gomez JL, Candas B (1997) Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab 82:2396–2402

    Article  CAS  PubMed  Google Scholar 

  153. Pacobahyba N, De Souza Vale RG, De Souza SLP et al (2012) Muscle strength, serum basal levels of testosterone and urea in soccer athletes submitted to non-linear periodization program. Rev Bras Med Esporte 18:130–133

    Article  Google Scholar 

  154. Kersey RD, Elliot DL, Goldberg L et al (2012) National Athletic Trainers’ Association. National Athletic Trainers’ Association position statement: anabolic-androgenic steroids. J Athl Train 47:567–588

    Article  PubMed  PubMed Central  Google Scholar 

  155. Cheung AS, Grossmann M (2018) Physiological basis behind ergogenic effects of anabolic androgens. Mol Cell Endocrinol 464:14–20

    Article  CAS  PubMed  Google Scholar 

  156. Pope HG Jr, Wood RI, Rogol A, Nyberg F, Bowers L, Bhasin S (2013) Adverse health consequences of performance-enhancing drugs: an endocrine society scientific statement. Endocr Rev 35:341–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hartgens F, Kuipers H (2004) Effects of androgenic-anabolic steroids in athletes. Sports Med 34:513–554

    Article  PubMed  Google Scholar 

  158. Kuhn CM (2002) Anabolic steroids. Recent Prog Horm Res 57:411–434

    Article  CAS  PubMed  Google Scholar 

  159. Kutscher EC, Lund BC, Perry PJ (2002) Anabolic steroids: a review for the clinician. Sports Med 32:285–296

    Article  PubMed  Google Scholar 

  160. Bowen RS, Turner MJ, Lightfoot JT (2011) Sex hormone effects on physical activity levels. Sports Med 41:73–86

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wilson JD (1988) Androgen abuse by athletes. Endocr Rev 9:181–191

    Article  CAS  PubMed  Google Scholar 

  162. Friedl KE (2000) Effect of anabolic steroid use on body composition and physical performance. In: Yesalis CE (ed) Anabolic steroids in sport and exercise. Human Kinetics, Champaign, pp 139–174

    Google Scholar 

  163. Sagoe D, Molde H, Andreassen CS, Torsheim T, Pallesen S (2014) The global epidemiology of anabolic-androgenic steroid use: a meta-analysis and meta-regression analysis. Ann Epidemiol 24:383–398

    Article  PubMed  Google Scholar 

  164. Dodge T, Hoagland MF (2011) The use of anabolic androgenic steroids and polypharmacy: a review of the literature. Drug Alcohol Depend 114:100–109

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Ostojic SM, Calleja J, Jourkesh M (2010) Effects of short-term dehydroepiandrosterone supplementation on body composition in young athletes. Chin J Phys 53:19–25

    Article  CAS  Google Scholar 

  166. Baume N, Schumacher YO, Sottas PE et al (2006) Effect of multiple oral doses of androgenic anabolic steroids on endurance performance and serum indices of physical stress in healthy male subjects. Eur J Appl Physiol 98:329–340

    Article  CAS  PubMed  Google Scholar 

  167. Yen SS, Morales AJ, Khorram O (1995) Replacement of DHEA in aging men and women. Potential remedial effects. Ann N Y Acad Sci 774:128–142

    Article  CAS  PubMed  Google Scholar 

  168. Danhaive PA, Rousseau GG (1986) Binding of glucocorticoid antagonists to androgen and glucocorticoid hormone receptors in rat skeletal muscle. J Steroid Biochem 24:481–487

    Article  CAS  PubMed  Google Scholar 

  169. Danhaive PA, Rousseau GG (1988) Evidence for sex-dependent anabolic response to androgenic steroids mediated by muscle glucocorticoid receptors in the rat. J Steroid Biochem 29:575–581

    Article  CAS  PubMed  Google Scholar 

  170. Boone JB, Lambert CP, Flynn MG et al (1990) Resistance exercise effects on plasma cortisol, testosterone and creatine kinase activity in anabolic-androgenic steroid users. International Sports Medicine 11:293–297

    Article  Google Scholar 

  171. McKillop G, Todd IC, Ballantyne D (1989) The effects of bodybuilding and anabolic steroids on left ventricular structure and function. J Cardiovasc Technol 1(8):23–29

    Google Scholar 

  172. Rozenek R, Rahe CH, Kohl HH, Marple DN, Wilson GD, Stone MH (1990) Physiological responses to resistance-exercise in athletes self-administering anabolic steroids. J Sports Med Phys Fitness 30:354–360

    CAS  PubMed  Google Scholar 

  173. Su TP, Pagliaro M, Schmidt PJ, Pickar D, Wolkowitz O, Rubinow DR (1993) Neuropsychiatric effects of anabolic steroids in male normal volunteers. JAMA 269:2760–2764

    Article  CAS  PubMed  Google Scholar 

  174. Kanayama G, Kean J, Hudson JI, Pope HG Jr (2013) Cognitive deficits in long-term anabolic-androgenic steroid users. Drug Alcohol Depend 130:208–214

    Article  CAS  PubMed  Google Scholar 

  175. Fargo KN, Foecking EM, Jones KJ, Sengelaub DR (2009) Neuroprotective actions of androgens on motoneurons. Front Neuroendocrinol 30:130–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bird SR, Goebel C, Burke LM, Greaves RF (2016) Do** in sport and exercise: anabolic, ergogenic, health and clinical issues. Ann Clin Biochem 53:196–221

    Article  CAS  PubMed  Google Scholar 

  177. Frati P, Busardò FP, Cipolloni L, Dominicis ED, Fineschi V (2015) Anabolic androgenic steroid (AAS) related deaths: autoptic, histopathological and toxicological findings. Curr Neuropharmacol 13:146–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Howlett TA (1987) Hormonal responses to exercise and training: a short review. Clin Endocrinol 26:723–742

    Article  CAS  Google Scholar 

  179. Castellano J, Alvarez-Pastor D, Bradley PS (2014) Evaluation of research using computerised tracking systems (Amisco® and Prozone®) to analyse physical performance in elite soccer: a systematic review. Sports Med 44(5):701–712

    Article  PubMed  Google Scholar 

  180. Coutts AJ, Duffield R (2010) Validity and reliability of GPS devices for measuring movement demands of team sports. J Sci Med Sport 13:133–135

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos E. Koundourakis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koundourakis, N.E., Margioris, A.N. The complex and bidirectional interaction between sex hormones and exercise performance in team sports with emphasis on soccer. Hormones 18, 151–172 (2019). https://doi.org/10.1007/s42000-019-00115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-019-00115-7

Keywords

Navigation