Log in

Spectral Solutions for Differential and Integral Equations with Varying Coefficients Using Classical Orthogonal Polynomials

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

Spectral methods for solving differential/integral equations are characterized by the representation of the solution by a truncated series of smooth functions. The unknowns to be determined are the expansion coefficients in such a representation. The goal of this article is to give an overview of numerical problems encountered when determining these coefficients and the rich variety of techniques proposed to solve these problems. Therefore, a series of explicit formulae expressing the derivatives, integrals and moments of a class of orthogonal polynomials of any degree and for any order in terms of the same polynomials are addressed. We restrict the current study to the orthogonal polynomials of the Hermite, generalized Laguerre, Bessel, and Jacobi (including Legendre, Chebyshev, and ultraspherical) families. Moreover, formulae expressing the coefficients of an expansion of these polynomials which have been differentiated or integrated an arbitrary number of times in terms of the coefficients of the original expansion are given. In addition, formulae for the polynomial coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its original expanded coefficients are also presented. A simple approach to build and solve recursively for the connection coefficients between different orthogonal polynomials is established. The essential results are summarized in tables which could serve as a useful reference to numerical analysts and practitioners. Finally, applications of these results in solving differential and integral equations with varying polynomial coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, are implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here the superscript does not mean a derivative!

References

  1. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  2. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods. Theory and Applications. SIAM, Philadeliphia (1977)

    Book  MATH  Google Scholar 

  3. Doha, E.H., Abd-Elhameed, W.M.: On the coefficients of integrated expansions and integrals of Chebyshev polynomials of third and fourth kinds. Bull. Malays. Math. Sci. Soc. 37(2), 383–398 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Fox, L., Parker, I.B.: Chebyshev Polynomials in Numerical Analysis. Oxford University Press, London (1972)

    Google Scholar 

  5. Karageorghis, A.: A note on the Chebyshev coefficients of the general-order derivative of an infinitely differentiable function. J. Comput. Appl. Math. 21, 129–132 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Phillips, T.N.: On the Legendre coefficients of a general-order derivative of an infinitely differentiable function. IMA. J. Numer. Anal. 8, 455–459 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Karageorghis, A., Phillips, T.N.: On the coefficients of differentiated expansions of ultraspherical polynomials, ICASE Report No. 89–65 (1989), NASA Langley Research Center, Hampton. VA Appl. Num. Math. 9(1992), 133–141

  8. Doha, E.H.: The coefficients of differentiated expansions and derivatives of ultraspherical polynomials. J. Comput. Math. Appl. 21, 115–122 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Doha, E.H.: On the coefficients of differentiated expansions and derivatives of Jacobi polynomials. J. Phys. A: Math. Gen. 35, 3467–3478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eslahchi, M.R., Dehghan, M., Ahmadi\_Asl, S.: The general Jacobi matrix method for solving some nonlinear ordinary differential equations. Appl. Math. Model. 36(8), 3387–3398 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Doha, E.H.: On the connection coefficients and recurrence relations arising from expansions in series of Laguerre polynomials. J. Phys. A: Math. Gen. 36, 5449–5462 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Doha, E.H.: On the connection coefficients and recurrence relations arising from expansions in series of Hermite polynomials. Integral Transforms Spec. Funct. 15(1), 13–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Doha, E.H., Ahmed, H.M.: Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials. J. Phys. A: Math. Gen. 37, 8045–8063 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Doha, E.H., Bhrawy, A.H., Saker, M.A.: Integrals of Bernstein polynomials: an application for the solution of high even-order differential equations. Appl. Math. Lett. 24(4), 559–565 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Doha, E.H., Bhrawy, A.H., Saker, M.A.: On the derivatives of Bernstein polynomials: an application for the solution of high even-order differential equations. Bound. Value Probl. 2011(1), 829543 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Area, I., Godoy, E., Ronveaux, A., Zarzo, A.: Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: discrete case. J. Comput. Appl. Math. 89, 309–325 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lewanowicz, S., Godoy, E., Area, I., Ronveaux, A., Zarzo, A.: Recurrence relations for coefficients of Fourier series expansions with respect to \(q\)-classical orthogonal polynomials. Numer. Algorithms 23, 31–50 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Esmaili, S., Eslahchi, M.R.: A modified spectral method for solving operator equations. J. Comput. Appl. Math. 292, 105–135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lewanowicz, S.: Quick construction of recurrence relations for the Jacobi coefficients. J. Comput. Appl. Math. 43, 355–372 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lewanowicz, S.: Recurrences of coefficients of series expansions with respect to classical orthogonal polynomials. Appl. Math. 29, 97–116 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Elgindy, K.T., Smith-Miles, K.A.: Solving boundary value problems, integral, and integro-differential equations using Gegenbauer integration matrices. J. Comput. Appl. Math. 237, 307–325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zaky, M.A.: An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid. Comput. Math. Appl. 75, 2243–2258 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Clenshaw, C.W.: The numerical solution of linear differential equations in Chebyshev series. Math. Proc. Camb. Phil. Soc. 53, 134–149 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  24. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  25. El-Gendi, S.E.: Chebyshev solution of differential, integral, and integro-differential equations. Comput. J. 12, 282–287 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  26. Phillips, T.N., Karageorghis, A.: On the coefficients of integrated expansions of ultrspherical polynomials. SIAM J. Numer. Anal. 27, 823–830 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Doha, E.H.: On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations. J. Comput. Appl. Math. 139, 275–298 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Doha, E.H.: On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials. J. Phys. A: Math. Gen. 37, 657–675 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Doha, E.H., Ahmed, H.M., El-Soubhy, S.I.: Explicit formulae for the coefficients of integrated expansions of Laguerre and Hermite polynomials and their integrals. Integral Transforms Spec. Funct. 20(7), 491–503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics. Birkhäuser, Basel (1988)

    Book  MATH  Google Scholar 

  31. Masjedjamei, M.: Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation. Integral Transforms Spec. Funct. 13(2), 169–190 (2002)

    Article  MathSciNet  Google Scholar 

  32. Masjedjamei, M.: Classical orthogonal polynomials with weight function \(((a x+ b)^2 +(c x+ d)^2)^{- p} \exp (q \arctan (a x+b)/ (c x+d)); x\in (-\infty,\infty )\) and a generalization of T and F distributions. Integral Transforms Spec. Funct. 15, 137–153 (2004)

    Article  MathSciNet  Google Scholar 

  33. Masjedjamei, M.: A basic class of symmetric orthogonal polynomials using the extended Sturm–Liouville theorem for symmetric functions. J. Math. Anal. Appl. 325, 753–775 (2007)

    Article  MathSciNet  Google Scholar 

  34. Koepf, W., Schmersau, D.: Representations of orthogonal polynomials. J. Comput. Appl. Math. 90, 57–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sánchez-Ruiz, J., Dehesa, J.S.: Expansions in series of orthogonal polynomials. J. Comput. Appl. Math. 89, 155–170 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Szegö, G.: Orthogonal Polynomials, Amer. Math. Soc. Collq. Pub. 23 (1985)

  37. Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  38. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  39. Askey, R., Gasper, G.: Jacobi polynomials expansions of Jacobi Polynomials with non-negative coefficients. Proc. Camb. Phil. Soc. 70, 243–255 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ronveaux, A., Belmehdi, S., Godoy, E., Zarzo, A.: Recurrence relation approach for connection coefficients. Applications to classical discrete orthogonal polynomials, Centre de Researches Mathématiques, CRM proceedings and Lecture notes, vol. 9, pp. 319–335 (1996)

  41. Ronveaux, A., Zarzo, A., Godoy, E.: Recurrence relations for connection coefficients between two families of orthogonal polynomials. J. Comput. Appl. Math. 62, 67–73 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lewanowicz, S.: Recurrence relations for the coefficients in Jacobi series solutions of linear differential equations. SIAM J. Math. Anal. 17, 1037–1052 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. Scraton, R.E.: A modification of Miller’s recurrence algorithm. BIT Numer. Math. 12, 242–251 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  44. Weixlbaumer, C.: Solutions of difference equations with polynomial coefficients, Australia: RISC Linz Johannes Kepler Universitat (2001)

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments and suggestions which have improved and shortened the original manuscript to its present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. H. Doha.

Additional information

Communicated by Davod Khojasteh Salkuyeh.

Appendix A

Appendix A

See Tables 5 and 6.

Table 5 Basic data of four families of classical orthogonal polynomials
Table 6 Basic data of four families of classical orthogonal polynomials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doha, E.H., Youssri, Y.H. & Zaky, M.A. Spectral Solutions for Differential and Integral Equations with Varying Coefficients Using Classical Orthogonal Polynomials. Bull. Iran. Math. Soc. 45, 527–555 (2019). https://doi.org/10.1007/s41980-018-0147-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-018-0147-1

Keywords

Mathematics Subject Classification

Navigation