Log in

Evaluation of ECMWF and NCEP Reanalysis Wind Fields for Long-Term Historical Analysis and Ocean Wave Modelling in West Africa

  • Original Paper
  • Published:
Remote Sensing in Earth Systems Sciences Aims and scope Submit manuscript

Abstract

Ocean wind fields form a significant input to ocean wave models. This study evaluates the accuracy of two major reanalysis wind fields: NCEP-NCAR reanalysis-II (NNR-II) and ECMWF ERA5 wind datasets in the marine domain of West Africa. The objective is to identify the reanalysis data that best represents the wind regimes of the sub-region for use in climate studies and ocean wave modelling. The reanalysis datasets were validated against in situ measurements from PIRATA meteorological buoys in the region. Both reanalysis datasets indicate good agreement with in situ measurements and capture the variability in the wind fields. However, ERA5 wind fields outperform the NNR-II wind fields and better represents the variability in wind fields in the region. They display higher correlation coefficients and R-squared values as well as lower bias and RMSE values for all wind components at all PIRATA buoy locations. Correlation coefficients of 0.92, 0.87, 0.94, and 0.98; R-squared values of 0.83, 0.76, 0.89, and 0.96; mean bias of −0.34±0.75 ms−1, 0.25±33.75°, 0.07   ±   0.86 ms−1, and −0.21±0.96 ms−1; and RMSE values of 0.82 ms−1, 33.75°, 0.87 ms−1, and 0.98 ms−1 were observed for ERA5 resolved wind speeds, wind directions, and zonal and meridional winds respectively. NNR-II also recorded correlation coefficients of 0.64, 0.7, 0.73, and 0.9; R-squared values of 0.19, 0.39, 0.32, and 0.79; mean bias of 0.12±1.77 ms−1, 8.91±53.43°, 0.55±2.09 ms−1, and −0.31±2.15 ms−1; and RMSE values of 1.77 ms−1, 54.17°, 2.16 ms−1, and 2.17 ms−1 for resolved wind speeds, wind directions, and zonal and meridional winds, respectively. NNR-II winds tend to highly overestimate zonal wind speeds and underestimate meridional wind speeds. Meridional winds are better predicted compared to zonal winds for both NNR-II and ERA5 winds. There was a general overestimation of lower wind speeds and underestimation of higher wind speeds on the part of both reanalysis datasets although this assertion varied with geographical location. To enhance the accuracy of resolved wind velocities and directions in the region, there is the need to improve the estimation of zonal winds in general by both NNR-II and ERA5 winds but with much efforts needed for NNR-II. In effect, ERA5 reanalysis winds better describe the wind regime of West Africa for climate studies and ocean wave modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

In this paper, ECMWF ERA5 reanalysis wind data were obtained from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview; NCEP reanalysis wind data were obtained from https://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis2/gaussian_grid/; Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) meteorological buoy data were obtained from https://ftp1.ifremer.fr/Core/INSITU_GLO_NRT_OBSERVATIONS_013_030/history/mooring/.

References

  1. Ayik A, Ijumba N, Kabiri C, Goffin P (2021) Preliminary wind resource assessment in South Sudan using reanalysis data and statistical methods. Renew Sust Energ Rev 138(November 2020):110621. https://doi.org/10.1016/j.rser.2020.110621

    Article  Google Scholar 

  2. Bôas ABV, Ardhuin F, Ayet A, Bourassa MA, Brandt P, Chapron B, Cornuelle BD, Farrar JT, Fewings MR, Fox-Kemper B, Gille ST, Gommenginger C, Heimbach P, Hell MC, Li Q, Mazloff MR, Merrifield ST, Mouche A, Rio MH et al (2019) Integrated observations of global surface winds, currents, and waves: requirements and challenges for the next decade. Front Mar Sci 6(425):1–34. https://doi.org/10.3389/fmars.2019.00425

    Article  Google Scholar 

  3. Boccara G, Hertzog A, Basdevant C, Vial F (2008) Accuracy of NCEP/NCAR reanalyses and ECMWF analyses in the lower stratosphere over Antarctica in 2005. J Geophys Res Atmos 113(20):1–15. https://doi.org/10.1029/2008JD010116

    Article  Google Scholar 

  4. Bourlès B, Araujo M, Mcphaden MJ, Brandt P (2019) PIRATA: a sustained observing system for tropical Atlantic climate research and forecasting:577–616. https://doi.org/10.1029/2018EA000428

  5. Boyd SC, Weaver RJ (2021) Replacing a third-generation wave model with a fetch based parametric solver in coastal estuaries. Estuar Coast Shelf Sci 251(January):107192. https://doi.org/10.1016/j.ecss.2021.107192

    Article  Google Scholar 

  6. Bromwich DH, Wang S-H (2005) Evaluation of the NCEP–NCAR and ECMWF 15- and 40-yr reanalyses using rawinsonde data from two independent Arctic field experiments. Mon Weather Rev 133(12):3562–3578. https://doi.org/10.1175/MWR3043.1

    Article  Google Scholar 

  7. Campos RM, Soares CG (2017) Assessment of three wind reanalyses in the North Atlantic Ocean. J Oper Oceanogr 10(1):30–44. https://doi.org/10.1080/1755876X.2016.1253328

    Article  Google Scholar 

  8. Cardone H, Graber C, Jensen RE, Hasselmann S, Caruso MJ (1995) In search of the true surface wind field in SWADE IOP-1: ocean wave modelling perspective. Global Ocean Atmos Syst 3:107–150

    Google Scholar 

  9. Cardone VJ, Cox AT, Swail VR (1999) Evaluation of NCEP reanalysis surface marine wind fields for ocean wave hindcasts. Proc. WMO Workshop on Advances in Marine Climatology (CLIMAR99) 2:8–15. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:EVALUATION+OF+NCEP+REANALYSIS+SURFACE+MARINE+WIND+FIELDS+FOR+OCEAN+WAVE+HINDCASTS#0. Accessed 16 Jun 2020

  10. Cavaleri L, Bertotti L (2006) The improvement of modelled wind and wave fields with increasing resolution. Ocean Eng 33(5–6):553–565. https://doi.org/10.1016/j.oceaneng.2005.07.004

    Article  Google Scholar 

  11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  12. Desbiolles F, Blanke B, Bentamy A (2014) Short-term upwelling events at the western African coast related to synoptic atmospheric structures as derived from satellite observations. J Geophys Res Oceans 119(1):461–483. https://doi.org/10.1002/2013JC009278

    Article  Google Scholar 

  13. Dezfuli AK, Ichoku CM, Mohr KI, Huffman GJ (2017) Precipitation characteristics in West and East Africa from satellite and in situ observations. J Hydrometeorol 18(6):1799–1805. https://doi.org/10.1175/JHM-D-17-0068.1

    Article  Google Scholar 

  14. Fink AH, Agustí-Panareda A, Parker DJ, Lafore JP, Ngamini JB, Afiesimama E, Beljaars A, Bock O, Christoph M, Didé F, Faccani C, Fourrié N, Karbou F, Polcher J, Mumba Z, Nuret M, Pohle S, Rabier F, Tompkins AM, Wilson G (2011) Operational meteorology in West Africa: observational networks, weather analysis and forecasting. Atmos Sci Lett 12(1):135–141. https://doi.org/10.1002/asl.324

    Article  Google Scholar 

  15. Gounou A, Guichard F, Couvreux F (2012) Observations of diurnal cycles over a West African meridional transect: pre-monsoon and full-monsoon seasons. Bound-Layer Meteorol 144(3):329–357. https://doi.org/10.1007/s10546-012-9723-8

    Article  Google Scholar 

  16. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc (March):1–51. https://doi.org/10.1002/qj.3803

  17. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A et al (1996) The NCEP / NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–472

    Article  Google Scholar 

  18. Kamga AF, Fongang S, Viltard A (2000) Systematic errors of the ECMWF operational model over tropical Africa. Mon Weather Rev 128(6):1949–1959. https://doi.org/10.1175/1520-0493(2000)128<lt;1949:SEOTEO<;2.0.CO;2

  19. Kanamitsu M (1989) Description of the NMC global data assimilation and forecast system. Weather Forecast 4:335–342

    Article  Google Scholar 

  20. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S, Hnilo JJ, Fiorino M, Potter GL (2002) Ncep-DOE AMIP-II reanalysis (R-2). Am Meteorol Soc 83:1631–1643. https://doi.org/10.1175/BAMS-83-11

    Article  Google Scholar 

  21. Kent EC, Rayner NA, Berry DI, Eastman R, Grigorieva V, Huang B, Kennedy JJ, Smith SR, Willett KM (2019) Observing requirements for long-term climate records at the ocean surface. Front Mar Sci 6(441):1–28. https://doi.org/10.3389/fmars.2019.00441

    Article  Google Scholar 

  22. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, Dool, H. van den D., Jenne, R., & Fiorino, M. (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247–268

    Article  Google Scholar 

  23. Liu WT, Tang W (1996) Equivalent Neutral Wind. JPL Publication 96-17. Jet Propulsion Laboratory, Pasadena,  pp 16

  24. Manney GL, Allen DR, Krüger K, Naujokat B, Santee ML, Sabutis JL, Pawson S, Swinbank R, Randall CE, Simmons AJ, Long C (2005) Diagnostic comparison of meteorological analyses during the 2002 Antarctic winter. Mon Weather Rev 133(5):1261–1278. https://doi.org/10.1175/MWR2926.1

    Article  Google Scholar 

  25. Nicholson SE (2018) The ITCZ and the seasonal cycle over equatorial Africa. Bull Am Meteorol Soc 99(2):337–348. https://doi.org/10.1175/BAMS-D-16-0287.1

    Article  Google Scholar 

  26. Peixoto JP, Oort AH, Covey C, Taylor K (1992) Physics of climate. Phys Today 45(8):67–67. https://doi.org/10.1063/1.2809772

    Article  Google Scholar 

  27. Petrik R, Geyer B, Rockel B (2021) On the diurnal cycle and variability of winds in the lower planetary boundary layer: evaluation of regional reanalyses and hindcasts. Tellus Ser A Dyn Meteorol Oceanogr 73(1):1–28. https://doi.org/10.1080/16000870.2020.1804294

    Article  Google Scholar 

  28. Ponce de León S, Soares CG (2008) Sensitivity of wave model predictions to wind fields in the Western Mediterranean Sea. Coast Eng 55(11):920–929. https://doi.org/10.1016/j.coastaleng.2008.02.023

    Article  Google Scholar 

  29. Reed RJ, Hollingsworth A, Heckley WA, Delsol F (1988) An evaluation of the performance of the ECMWF operational system in analyzing and forecasting easterly wave disturbances over Africa and tropical Atlantic. Mon Weather Rev 116:824–865

    Article  Google Scholar 

  30. Reynolds RW, Arpe K, Gordon C, Hayes SP, Leetmaa A, Mcphaden MJ (1989) A comparison of Tropical Pacific surface wind analyses. J Clim 2:105–111 http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf

    Article  Google Scholar 

  31. Ruti PM, Marullo S, D’Ortenzio F, Tremant M (2008) Comparison of analyzed and measured wind speeds in the perspective of oceanic simulations over the Mediterranean basin: analyses, QuikSCAT and buoy data. J Mar Syst 70(1–2):33–48. https://doi.org/10.1016/j.jmarsys.2007.02.026

    Article  Google Scholar 

  32. Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, Chuang HY, Juang HMH, Sela J et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057. https://doi.org/10.1175/2010BAMS3001.1

    Article  Google Scholar 

  33. Saleh D, Afandi G, Hassan R (2014) Wind energy modeling over West Africa. RESD 1(2):35–46. https://doi.org/10.15764/resd.2014.02004

  34. Schmidt KM, Swart S, Reason C, Nicholson S-A (2017) Evaluation of satellite and reanalysis wind products with in situ wave glider wind observations in the Southern Ocean. Am Meteorol Soc 34:2551–2568. https://doi.org/10.1175/JTECH-D-17-0079.1

    Article  Google Scholar 

  35. Servain J, Caniaux G, Kouadio YK, McPhaden MJ, Araujo M (2014) Recent climatic trends in the tropical Atlantic. Clim Dyn 43(11):3071–3089. https://doi.org/10.1007/s00382-014-2168-7

    Article  Google Scholar 

  36. Smith SR, Alory G, Andersson A, Asher W, Baker A, Berry DI, Drushka K, Figurskey D, Freeman E, Holthus P, Jickells T, Kleta H, Kent EC, Kolodziejczyk N, Kramp M, Loh Z, Poli P, Schuster U, Steventon E et al (2019) Ship-based contributions to global ocean, weather, and climate observing systems. Front Mar Sci 6(434):1–26. https://doi.org/10.3389/fmars.2019.00434

    Article  Google Scholar 

  37. Sterl A (2004) On the (in) homogeneity of reanalysis products. J Clim 17(19):3866–3873. https://doi.org/10.1175/1520-0442(2004)017<3866:OTIORP2.0.CO;2

  38. Sterl S, Liersch S, Koch H, van Lipzig NPM, Thiery W (2018) A new approach for assessing synergies of solar and wind power: implications for West Africa. Environ Res Lett 13(9). https://doi.org/10.1088/1748-9326/aad8f6

  39. Stopa JE, Cheung KF (2014) Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and the NCEP Climate Forecast System Reanalysis. Ocean Model 75:65–83. https://doi.org/10.1016/j.ocemod.2013.12.006

    Article  Google Scholar 

  40. Sultan B, Janicot S (2000) Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geophys Res Lett 27(20):3353–3356

    Article  Google Scholar 

  41. Talla CF, Njomo D, Cornet C, Dubuisson P, Nguimdo LA (2018) ECMWF atmospheric profiles in Maroua, Cameroon: analysis and overview of the simulation of downward global solar radiation. Atmosphere 9(2). https://doi.org/10.3390/atmos9020044

  42. Tompkins AM, Diongue-Niang A, Parker DJ, Thorncroft CD (2005) The African easterly jet in the ECMWF integrated forecast system: 4D-Var analysis. Q J R Meteorol Soc 131(611):2861–2885. https://doi.org/10.1256/qj.04.136

    Article  Google Scholar 

  43. Yu L, Zhang Z, Zhou M, Zhong S, Lenschow D, Hsu H, Wu H, Sun B (2010) Validation of ECMWF and NCEP – NCAR reanalysis data in Antarctica ï ù ê. Adv Atmos Sci 27(5):1151–1168. https://doi.org/10.1007/s00376-010-9140-1.1.Introduction

    Article  Google Scholar 

  44. Yuan X (2004) High-wind-speed evaluation in the Southern Ocean. J Geophys Res Atmos 109(D13) n/a-n/a. https://doi.org/10.1029/2003JD004179

  45. Zuo H, Balmaseda MA, Tietsche S, Mogensen K, Mayer M (2019) The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci 15(3):779–808. https://doi.org/10.5194/os-15-779-2019

    Article  Google Scholar 

Download references

Acknowledgements

ECMWF ERA5 data was obtained from the Copernicus Climate Change Services (C3S) and NCEP Reanalysis 2 data was provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA. PIRATA in situ data was also obtained through the Copernicus Marine Environment Monitoring Service (CMEMS). Data analysis and figures were generated using Matlab®. Thanks to Prof. Ebenezer Nyadjro of Mississippi State University/NOAA Northern Gulf Institute for his useful comments. We also acknowledge Professor Michael J. McPhaden of the Pacific Marine Environmental Laboratory/NOAA, for his encouragement and helpful suggestions. We thank the anonymous reviewers whose comments helped improve the manuscript. This study is part of the PhD. thesis of Bennet Atsu Kwame Foli.

Funding

This study was supported by the Global Monitoring for Environment and Security and Africa (GMES & Africa) project at the University of Ghana. Partial financial support was provided by the Open Society Foundation (OSF) under the Enhancing Efficiency and Effectiveness – Climate Change and Sustainability Development (EEE-CCSD) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bennet Atsu Kwame Foli.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foli, B.A.K., Appeaning Addo, K., Ansong, J.K. et al. Evaluation of ECMWF and NCEP Reanalysis Wind Fields for Long-Term Historical Analysis and Ocean Wave Modelling in West Africa. Remote Sens Earth Syst Sci 5, 26–45 (2022). https://doi.org/10.1007/s41976-021-00052-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41976-021-00052-3

Keywords

Navigation