Log in

Seasonal Variation of Mass Concentration and Chemical Composition of PM2.5 and PM10, Source Identification and Human Health Risk Assessment in Meknes City in Morocco

  • Original Paper
  • Published:
Aerosol Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, we are interested in the characterization, identification of the sources and seasonal variation of airborne particles in suspension and their chemical compositions as well as their human health risk assessment in Meknes city in Morocco. For this, samples were taken with Gent sampler, making it possible to separate the coarse fractions (PM10) from the fine fractions (PM2.5). The particles were collected, for a year in the city center in Meknes–Morocco, near the highways with very important automobile traffic and not far from the rail traffic. The concentrations of eight elements (Ca, Cr, Cu, Fe, K, Mn, Pb and Zn) were analyzed using Total Reflection X Rays Fluorescence (TXRF). Some filters were analyzed by Scanning Electron Microscopy coupled to the Energy-Dispersive Spectrometer (SEM–EDS). The statistical approach to pollution sources is carried out by the application of Positive Matrix Factorization (PMF). The results obtained for particulate matter show the importance of terrigenous inputs and soil resuspension, especially in July and August when the coarse fraction reaches the highest levels (increased wind erosion of the soil). European quality standards and WHO recommendations have also been exceeded. While for the chemical composition, the seasonal variations are not significant. It is also noted that the Pb contents are higher than the quality standards. Regarding the sources of pollution, the application of PMF and SEM–EDS show the influence of three major sources: mineral emissions (cement industry), mix of re-suspended soil particles and road traffic and rail traffic. Health risk assessments revealed that non-cancerous hazards were lower than the acceptable level (< 1), hence no significant risk is expected, while, the cancer risk was higher than the acceptable level (10–6) particularly for Cr. In addition, mortality risk for PM2.5 and PM10 were higher due to higher ambient concentrations measured in Meknes city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  • Abdallaoui A (1990) Contribution à l’étude de la pollution des cours d’eau Marocains par les métaux lourds : cas de l’Oued Boufekrane. Ph.D. Thesis, Moulay Ismaïl University, Meknes, Morocco, 281 pages

  • Abdouh M, El Atrouz A, Mechkouri A (2004) Profil environnementale de Meknès. Agendas 21 locaux pour la promotion de l’environnement et du développement durable en milieu urbain, 91 pages

  • Afzali A, Rashid M, Sabariah B, Ramli M (2014) PM10 pollution: its prediction and meteorological influence in Pasir Gudang, Johor. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/18/1/012100

    Article  Google Scholar 

  • Airfobep (2009) La qualité de l’air de la région de l’étang de Berre et de l’ouest des Bouches- du Rhône. Bilan de la qualité de l’air, 130 pages

  • Ait Bouh H, Benyaich F, Bounakhla M, Noack Y, Zahry F, Tahri M (2010) Caractérisations de la matière particulaire atmosphérique dans la ville de Meknès. Phys Chem News 54:47–54

    Google Scholar 

  • Al-Masri MS, Al-Kharfan K, Al-Shamali K (2006) Speciation of Pb, Cu and Zn determined by sequential extraction for identification of air pollution sources in Syria. Atmos Environ 40:753–761

    Google Scholar 

  • Andréa V, Barraud C, Capron D, Preterre D, Keravec V, Vendeville C, Cazier F, Pottier D, Morin JP, Sichel F (2015) Comparative mutagenicity and genotoxicity of particles and aerosols emitted by the combustion of standard vs. rapeseed methyl ester supplemented bio-diesel fuels, Impact of after treatment devices: oxidation catalyst and particulate filter. Mutat Res Genet Toxicol Environ Mutagen 777(1):33–42

    Google Scholar 

  • Ariola V, Alessandro AD, Lucarelli F, Marcazzan G, Mazzei F, Nava S, Garcia-Orellana I, Prati P, Valli G, Vecchi R, Zucchiatti A (2006) Elemental characterization of PM10, PM2.5 and PM1 in the town of Genoa (Italy). Chemosphere 62:226–232

    Google Scholar 

  • Artíñano B, Salvador P, Alonso DG, Querol X, Alastuey A (2003) Anthropogenic and natural influence on the PM10 and PM2.5 aerosol in Madrid (Spain). Analysis of high concentration episodes. Environ Pollut 125(3):453–465

    Google Scholar 

  • Bačić T, Lynch AH, Cutler D (1999) Reactions to cement factory dust contamination by Pinus halepensis needles. Environ Exp Bot 41:155–166

    Google Scholar 

  • Barmpadimos I, Nufer M, Oderbolz DC, Keller J, Aksoyoglu S, Hueglin C, Baltensperger U, Prévôt ASH (2011) The weekly cycle of ambient concentrations and traffic emissions of coarse (PM10–PM2.5) atmospheric particles. Atmos Environ 45:4580–4590

    Google Scholar 

  • Begum BA, Kim E, Biswas SK, Hopke PK (2004) Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmos Environ 38:3025–3038

    Google Scholar 

  • Begum BA, Biswas SK, Kim E, Hopke PK, Khaliquzzaman M (2005) Investigation of sources of atmospheric aerosol at a hot spot area in Dhaka, Bangladesh. J Air Waste Manag Assoc 55:227–240

    Google Scholar 

  • Begum BA, Biswas SK, Hopke PK, Cohen DD (2006) Multi-element analysis and characterization of atmospheric particulate pollution in Dhaka. Aerosol Air Qual Res 6(4):334–359

    Google Scholar 

  • Bodor K, Bodor Z, Szép R (2021) Spatial distribution of trace elements (As, Cd, Ni, Pb) from PM10 aerosols and human health impact assessment in an Eastern European country, Romania. Environ Monit Assess 193:176. https://doi.org/10.1007/s10661-021-08931-4

    Article  Google Scholar 

  • Boogaard H, Kos GPA, Weijers EP, Janssen NAH, Fischer PH, Zee SC, Hartog SC, Hoek G (2011) Contrast in air pollution components between major streets and background locations: particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultrafine particle number. Atmos Environ 45:650–658

    Google Scholar 

  • Botle A, Singhal RK, Basu H, Manisha V, Masih J (2020) Health risk assessment of heavy metals associated with coarse and quasi-accumulative airborne particulate matter in Mumbai City situated on the Western Coast of India. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.100857

    Article  Google Scholar 

  • Boularab I, El Ghazi I, Mouhaddach O, Kestemont M-P, El Jaafari S (2015) Spatial analysis of particulate air pollution in Meknes City (Morocco). Int J Innov Appl Stud 13(4):781–788

    Google Scholar 

  • Chalvatzaki E, Chatoutsidou SE, Lehtomäki H, Almeida SM, Eleftheriadis K, Hänninen O, Lazaridis M (2019) Characterization of human health risks from particulate air pollution in selected European Cities. Atmosphere 10:96. https://doi.org/10.3390/atmos10020096

    Article  Google Scholar 

  • Choël M (2005) Analyse quantitative des particules atmosphériques par microscopie électronique à balayage couplée à la spectrométrie d’émission X. Ph.D. Thesis, Littoral University, Opal Coast, 190 pages

  • Colbeck I, Nasir ZA, Ahmad S, Ali Z (2011) Exposure to PM10, PM2.5, PM1 and carbon monoxide on roads in Lahore, Pakistan. Aerosol Air Qual Res 11:689–695

    Google Scholar 

  • Conradie EH, Van Zyl PG, Pienaar JJ, Beukes JP, Galy-Lacaux C, Venter AD, Mkhatshwa GV (2016) The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa. Atmos Environ 146:113–131

    Google Scholar 

  • Deepak S, Jaya D (2018) Seasonal variations in mass concentrations of PM10 and PM2.5 at traffic intersection and residential sites in Raipur city. Res J Chem Environ 22(1):25–31

    Google Scholar 

  • Dinoi A, Cesari D, Marinoni A, Bonasoni P, Riccio A, Chianese E, Tirimberio G, Naccarato A, Sprovieri F, Andreoli V, Moretti S, Gullì D, Calidonna CR, Ammoscato I, Contini D (2017) Inter-comparison of carbon content in PM2.5 and PM10 collected at five measurement sites in Southern Italy. Atmosphere 8:243. https://doi.org/10.3390/atmos8120243

    Article  Google Scholar 

  • Durand MC (2003) Caractérisation physico-chimique des produits de l’assainissement pluviale. Origine et devenir des métaux traces et des polluants organiques. PhD Thesis, University of Poitiers, France, 268 pages

  • Edlund KK, Killman F, Molnár P, Boman J, Stockfelt L, Wichmann J (2021) Health risk assessment of PM2.5 and PM2.5-bound trace elements in Thohoyandou, South Africa. Int J Environ Res Public Health 18:1359. https://doi.org/10.3390/ijerph18031359

    Article  Google Scholar 

  • El Ghazi I, Berni I, Menouni A, Amane M, Kestemont M-P, El Jaafari S (2020) Study of the relationship between exposure to road traffic-related air pollution and the incidence of respiratory pathologies in the city of Meknes, Morocco. Int J Innov Appl Stud 31(3):428–443

    Google Scholar 

  • El Ghazi I, Berni I, Menouni A, Amane M, Kestemont M-P, El Jaafari S (2021) Evaluation of the perception of air quality by the population Of the city of Meknes, Morocco. Int J Prog Sci Technol (IJPSAT) 24(2):414–422

    Google Scholar 

  • El Ghazi I, Berni I, Menouni A, Amane M, Kestemont M-P, El Jaafari S (2022) Exposure to air pollution from road traffic and incidence of respiratory diseases in the City of Meknes, Morocco. Pollutants 2:306–327

    Google Scholar 

  • Elichegaray C, Bouallala S, Colosio J, Desqueyroux H, Galsomiès L, Pernin H, Poisson N, Stroebel R (2003) La qualité de l’air en France—tendances et perspectives. ADEME/Département surveillance de la qualité de l’air, 16 pages

  • Embiale A, Chandravanshi BS, Zewge F, Sahle-Demessie E (2020) Health risk assessment of total volatile organic compounds, particulate matters and trace elements in PM10 in typical living rooms in Addis Ababa, Ethiopia. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.1814266

    Article  Google Scholar 

  • Giri D, Murthy VK, Adhikary PR, Khanal SN (2007) Estimation of number of deaths associated with exposure to excess ambient PM10 air pollution. Int J Environ Sci Tech 4(2):183–188

    Google Scholar 

  • Gugamsetty B, Wei H, Liu CN, Awasthi A, Hsu SC, Tsai CJ, Roam GD, Wu YC, Chen CF (2012) Source characterization and apportionment of PM10, PM2.5 and PM0.1 by using positive matrix factorization. Aerosol Air Qual Res 12:476–491

    Google Scholar 

  • Haque MdM, Sultana S, Niloy NM, Tareq QSB, SM, (2022) Source apportionment, ecological, and human health risks of toxic metals in road dust of densely populated capital and connected major highway of Bangladesh. Environ Sci Pollut Res 29:37218–37233

    Google Scholar 

  • Harrison RM, Tilling R, Callen RMS, Harrad S, Jarvis K (2003) A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmos Environ 37:2391–2402

    Google Scholar 

  • Hitzenberger R, Berner A, Galambos Z, Maenhaut W, Cafmeyer J, Schawarz J, Müller K, Spindler G, Wieprecht W, Acker K, Hillamo R, Mäkelä T (2004) Intercomparison of methods to measure the mass concentration of the atmospheric aerosol during INTRCOM2000—influence of instrumentation and size cuts. Atmos Environ 38:6467–6476

    Google Scholar 

  • IRIS, EPA (2019) Chromium (VI) (CASRN 18540-29-9). Integrated risk information system (IRIS) chemical assessment summary. U.S. Environmental Protection Agency National Center for Environmental Assessment. 33p

  • Izhar S, Goel A, Chakraborty A, Gupta T (2016) Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere 146:582–590

    Google Scholar 

  • Jiang J, Khan AU, Shi B, Tang S, Khan J (2019) Application of positive matrix factorization to identify potential sources of water quality deterioration of Huaihe River, China. Appl Water Sci 9(63):14p

    Google Scholar 

  • JOUE (2005) Directive 2004/107/CE du parlement européen et du conseil du 15 décembre 2004 concernant l’arsenic, le cadmium, le mercure, le nickel et les hydrocarbures aromatiques polycycliques dans l’air ambiant. Journal Officiel De L’union Européenne 23:3–16

    Google Scholar 

  • Kamunda C, Mathuthu M, Madhuku M (2016) Health risk assessment of heavy metals in soils from witwatersrand gold mining Basin, South Africa. Int J Environ Res Public Health 13(7):663. https://doi.org/10.3390/ijerph13070663

    Article  Google Scholar 

  • Keeler GJ, Morishita M, Young L-H (2005) Characterization of complex mixtures in urban atmospheres for inhalation exposure studies. Exp Toxicol Pathol 57:19–29

    Google Scholar 

  • Kerbachi R, Oucher N, Bitouche A, Berkouki N., Demri B, Boughedaoui M, Joumard R (2009) Pollution par les particules fines dans l’agglomération d’Alger. Colloque international Environnement et transports dans des contextes différents, Ghardaïa, Algérie. Actes, ENP edition, Alger, pp 31–40.

  • Le Floch M (2004) Caractérisation physico-chimique et traçage des émissions particulaires métalliques d’une usine d’incinération d’ordures ménagères dans l’air ambiant. Exemple de l’UIOM de Toulon (Var, France). Ph.D. Thesis, Aix-Marseille University of Law, Economics and Sciences, 325 pages

  • Lee E, Chan CH, Paatero P (1999) Application of positive matrix factorization in source apportionment of particulate polluants in Hong Kong. Atmos Environ 33:3201–3212

    Google Scholar 

  • Levei L, Hoaghia M-A, Roman M, Marmureanu L, Moisa C, Levei EA, Ozunu A, Cadar O (2020) Temporal trend of PM10 and associated human health risk over the past decade in Cluj-Napoca City, Romania. Appl Sci. https://doi.org/10.3390/app10155331

    Article  Google Scholar 

  • Li P-H, Kong S-F, Geng C-M, Han B, Lu B, Sun R-F, Zhao R-J, Bai Z-P (2013) Assessing the hazardous risks of vehicle inspection workers’ exposure to particulate heavy metals in their work places. Aerosol Air Qual Res 13:255–265

    Google Scholar 

  • Lin CC, Chen SJ, Huang KL, Hwang WI, Chang-Chien GP, Lin WY (2005) Characteristic of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environ Sci Technol 39(21):8113–8122

    Google Scholar 

  • López ML, Ceppi S, Palancar GG, Olcese LE, Tirao G, Toselli BM (2011) Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Córdoba City, Argentina. Atmos Environ 45:5450–5457

    Google Scholar 

  • Masiol M, Hofer A, Squizzato S, Piazza R, Rampazzo G, Pavoni B (2012) Carcinogenic and mutagenic risk associated to airborne particle-phase polycyclic aromatic hydrocarbons: a source apportionment. Atmos Environ 60:375–382

    Google Scholar 

  • McGuire ML, Chang RY-W, Slowik JG, Jeong C-H, Healy RM, Lu G, Mihele C, Abbatt JPD, Brook JR, Evans GJ (2014) Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra. Atmos Chem Phys 14:8017–8042

    Google Scholar 

  • MohseniBandpi A, Eslami A, Ghaderpoori M, Shahsavani A, Jeihooni AK, Ghaderpoury A, Alinejad A (2018) Health risk assessment of heavy metals on PM2.5 in Tehran air, Iran. Data Brief 17:347–355

    Google Scholar 

  • Monographie de la préfecture de Meknès (2017) Haut-Commissariat au Plan, Direction Provinciale de Meknès, 100 pages

  • Morishita M, Keeler GJ, Wagner JG, Harkema JR (2006) Source identification of ambient PM2.5 during summer inhalation exposure studies in Detroit, MI. Atmos Environ 40:3823–3834

    Google Scholar 

  • Ostro B (2004) Outdoor air pollution: Assessing the environmental burden of disease at national and local levels. Environmental burden of disease series, N° 5. World Health Organization. Protection of the Human environment, Geneva, 62 pages

  • Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemometr Intell Lab Syst 37:15–35

    Google Scholar 

  • Paatero P, Tapper U (1993) Analysis of different modes of factor analysis as least square fit problems. Chemometr Intell Lab Syst 18:183–194

    Google Scholar 

  • Paatero P, Tapper U (1994) Positive Matrix Factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

    Google Scholar 

  • Pekney NJ, Davidson CI, Robinson A, Zhou L, Hopke P, Eatough D, Rogge WF (2006) Major source categories for PM2.5 in Pittsburgh using PMF and UNMIX. Aerosol Sci Technol 40:910–924

    Google Scholar 

  • Pipal AS, Jan R, Satsangi PG, Tiwari S, Taneja A (2014) Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2.5 and PM10) over Agra, India. Aerosol Air Qual Res 14:1685–1700

    Google Scholar 

  • Polissar AV, Hopke PK, Poirot RL (2001) Atmospheric aerosol over Vermont: chemical composition and sources. Environ Sci Technol 35:4604–4621

    Google Scholar 

  • Puxbaum H, Gomiscek B, Kalina M, Bauer H, Salam A, Stopper S, Preining O, Hauck H (2004) A dual site study of PM2.5 and PM10 aerosol chemistry in the larger region of Vienna, Austria. Atmos Environ 38:3949–3958

    Google Scholar 

  • Quisefit JP, Gaudichet A (1998) Prélèvement des aérosols atmosphériques et analyses inorganiques. Anal Mag 26(9):M21–M27

    Google Scholar 

  • Ramadan Z, Song X-H, Hopke PK (2000) Identification of sources of Phoenix aerosol by positive matrix factorization. J Air Waste Manag Assoc 50:1308–1320

    Google Scholar 

  • Rayaleh WE (2006) Extraction des connaissances en imagerie micro-spectrométrique par analyse chimiométrique. Application à la caractérisation des constituants d’un calcul urinaire. Ph.D. Thesis, University of Lille, France, 197 pages

  • Salma I, Dal Maso M, Kulmala M, Záray G (2002) Modal characteristics of particulate matter in urban atmospheric aerosols. Microchem J 73:19–26

    Google Scholar 

  • Schraufnagel DE (2020) The health effects of ultrafine particles. Exp Mol Med 52:311–317

    Google Scholar 

  • Shaka’ H, Saliba NA (2004) Concentration measurements and chemical composition of PM10-2.5 and PM2.5 at a coastal site in Beirut, Lebanon. Atmos Environ 38:523–531

    Google Scholar 

  • Sharma R, Balasubramanian R (2018) Size-fractionated particulate matter in indoor and outdoor environments during the 2015 haze in Singapore: potential human health risk assessment. Aerosol Air Qual Res 18:904–917

    Google Scholar 

  • Song Y, Dai W, Shao M, Liu Y, Lu S, Kuster W, Golden P (2008) Comparison of receptor models for source apportionment of volatile organic compounds in Bi**g, China. Environ Pollut 156:174–183

    Google Scholar 

  • Sternbeck J, Sjodin A, Andreasson K (2002) Metal emissions from road traffic and the influence of re-suspension—results from two tunnel studies. Atmos Environ 36:4735–4744

    Google Scholar 

  • Tiwari S, Srivastava AK, Bisht DS, Bano T, Singh S, Behura S, Srivastava MK, Chate DM, Padmanabhamurty B (2010) Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. Int J Atmos Chem 62:3193–3209

    Google Scholar 

  • US-EPA (1989) Risk assessment guidance for superfund, Volume I, Human Health Evaluation Manual (Part A), Interim Final. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C. 20450, USA. EPA/540/1-89/002, 291 pages

  • US-EPA (2011) Exposure Factors Handbook. 2011 Edition, National Center for Environmental Assessment, Washington, DC, USA, Environmental Protection Agency, EPA/600/R-09/052F, 1436 pages

  • Wahlin P, Berkowicz R, Palmgren F (2006) Characterisation of traffic-generated particulate matter in Copenhagen. Atmos Environ 40:2151–2159

    Google Scholar 

  • Wambebe NM, Duan X (2020) Air quality levels and health risk assessment of particulate matters in Abuja Municipal Area, Nigeria. Atmosphere 11:817. https://doi.org/10.3390/atmos11080817

    Article  Google Scholar 

  • Wang XF, He SL, Chen S, Zhang Y, Wang A, Luo J, Ye X, Mo Z, Wu L, Xu P, Cai G, Chen Z, Lou X (2018) Spatiotemporal characteristics and health risk assessment of heavy metals in PM2.5 in Zhejiang Province. Int J Environ Res Public Health 15:583. https://doi.org/10.3390/ijerph15040583

    Article  Google Scholar 

  • Weckwerth G (2001) Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmos Environ 35:5525–5536

    Google Scholar 

  • WHO (2000) Guidelines for air quality. World Health Organization, Geneva, pp 32–71

    Google Scholar 

  • Wu L, Luo X-S, Li H, Cang L, Yang J, Yang J, Zhao Z, Tang M (2019) Seasonal levels, sources, and health risks of heavy metals in atmospheric PM2.5 from four functional areas of Nan**g City, Eastern China. Atmosphere 10:419. https://doi.org/10.3390/atmos10070419

    Article  Google Scholar 

  • **e YL, Hopke PK, Paatero P, Barrie LA, Li SM (1999) Identification of source nature and seasonal variations of arctic aerosol by positive matrix factorization. J Atmos Sci 56:249–260

    Google Scholar 

  • **ng Y-F, Xu Y-H, Shi M-H, Lian Y-X (2016) The impact of PM2.5 on the human respiratory system. J Thorac Dis 8(1):E69–E74

    Google Scholar 

  • Yang C-Y, Chen C-S, Yiang G-T, Cheng Y-L, Yong S-B, Wu M-Y, Li C-J (2018) New insights into the immune molecular regulation of the pathogenesis of acute respiratory distress syndrome. Int J Mol Sci 19(2):588. https://doi.org/10.3390/ijms19020588

    Article  Google Scholar 

  • Yatkin S, Bayram A (2008) Determination of major natural and anthropogenic sources profiles for particulate matter and trace elements in Izmir, Turkey. Atmos Environ 71:685–696

    Google Scholar 

  • Záray G, Óvári M, Salma I, Steffan I, Zeiner M, Caroli S (2004) Determination of platinum in urine and airborne particulate matter from Budapest and Vienna. Microchem J 76(90):31–34

    Google Scholar 

  • Zghaid M, Noack Y, Bounakhla M, Benyaich F (2009) Pollution atmosphérique particulaire dans la ville de Kenitra (Maroc). Pollution Atmosphérique Climat, Santé, Société 203:313–324

    Google Scholar 

  • Zhang B, Jiao L, Xu G, Zhao S, Tang X, Zhou Y, Gong C (2017) Influences of wind and precipitation on different-sized particulate matter concentrations (PM2.5, PM10, PM2.5–10). Meteorol Atmos Phys. https://doi.org/10.1007/s00703-017-0526-9

    Article  Google Scholar 

  • Zhao P, Feng Y, Zhu T, Jianhui W (2006) Characterizations of resuspended dust in six cities of North China. Atmos Environ 40:5807–5814

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Integrated Franco-Moroccan Volubilis Action (AI MA/05/129). We would like to thank all the people who contributed to the realization of this work, in particular, H. Esskate (CTM Agency, Meknes-Morocco) and A. Echaachouai (Middle School Allal El Fassi, Meknes-Morocco).

Funding

This work was supported by the Integrated Franco-Moroccan Volubilis Action (AI MA/05/129).

Author information

Authors and Affiliations

Authors

Contributions

All authors certify that they have participated sufficiently in the work to take public responsibility for the content; furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other country. HAB: processed the experimental data, formal analysis, Writing—original draft, writing review and editing, investigation, visualization, validation. MB, FB and YN: funding acquisition, supervision, designed and directed the project. MT: carried out the X-ray analysis. SF: contributed to sample collection. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding author

Correspondence to Hasna Ait Bouh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests in this section.

Ethics approval and consent to participate

Not applicable in this section.

Consent for publication

Not applicable in this section.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouh, H.A., Bounakhla, M., Benyaich, F. et al. Seasonal Variation of Mass Concentration and Chemical Composition of PM2.5 and PM10, Source Identification and Human Health Risk Assessment in Meknes City in Morocco. Aerosol Sci Eng 7, 151–168 (2023). https://doi.org/10.1007/s41810-022-00169-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41810-022-00169-y

Keywords

Navigation