Log in

Utility of the Compensatory Tracking Task for Objective Differentiation of Hypersomnolence in Depression: A High-Density EEG Investigation

  • Original Article
  • Published:
Sleep and Vigilance Aims and scope Submit manuscript

Abstract

Hypersomnolence is a common and debilitating symptom in mood disorders. However, objective differentiation of excessive daytime sleepiness (EDS) from non-EDS in depression has not yet been achieved. This study compared performance on the Compensatory Tracking Task (CTT) and concurrently recorded high-density (hd)EEG theta power in 22 patients with major depressive disorder (MDD) and co-occurring EDS against 22 age- and sex-matched patients with MDD but no EDS, as well as 22 age- and sex-matched healthy controls. Though depressed hypersomnolent participants endorsed feeling sleepier than depressed non-hypersomnolent and healthy control participants prior to starting the CTT, no group differences in CTT performance were observed. Average hdEEG theta power was higher during periods of high error on the CTT compared to periods of low error, but did not differ between the groups. Though the CTT still holds promise as an objective neurobehavioral measure, these results do not indicate a capability to differentiate EDS from non-EDS in mood disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Åkerstedt T, Gillberg M. Subjective and objective sleepiness in the active individual. Int J Neurosci. 1990;52(1–2):29–37. https://doi.org/10.3109/00207459008994241.

    Article  PubMed  Google Scholar 

  2. Beck AT, Steer RA, Brown GK. Beck depression inventory-II. San Antonio: Psychological Corporation; 1996.

    Google Scholar 

  3. Breslau N, Roth T, Rosenthal L, Andreski P. Sleep disturbance and psychiatric disorders: a longitudinal epidemiological study of young adults. Biol Psychiatry. 1996;39(6):411–8.

    Article  CAS  PubMed  Google Scholar 

  4. Cajochen C, Brunner DP, Kräuchi K, Graw P, Wirz-Justice A. Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep. 1995;18(10):890–4.

    Article  CAS  PubMed  Google Scholar 

  5. Cajochen C, Khalsa SB, Wyatt JK, Czeisler CA, Dijk DJ. EEG and ocular correlates of circadian melatonin phase and human performance decrements during sleep loss. Am J Physiol. 1999;277(3 Pt 2):R640–9.

    CAS  PubMed  Google Scholar 

  6. Carskadon MA, Dement WC. Effects of total sleep loss on sleep tendency. Percept Mot Skills. 1979;48(2):495–506. https://doi.org/10.2466/pms.1979.48.2.495.

    Article  CAS  PubMed  Google Scholar 

  7. Carskadon MA, Dement WC. Sleep tendency: an objective measure of sleep loss. Sleep Res. 1977;6(200):940.

    Google Scholar 

  8. Chua EC-P, Yeo S-C, Lee IT-G, Tan L-C, Lau P, Cai S, Gooley JJ. Sustained attention performance during sleep deprivation associates with instability in behavior and physiologic measures at baseline. Sleep. 2014;37(1):27–39. https://doi.org/10.5665/sleep.3302.

    Article  PubMed  PubMed Central  Google Scholar 

  9. De Gennaro L, Marzano C, Veniero D, Moroni F, Fratello F, Curcio G, Rossini PM. Neurophysiological correlates of sleepiness: a combined TMS and EEG study. NeuroImage. 2007;36(4):1277–87. https://doi.org/10.1016/j.neuroimage.2007.04.013.

    Article  PubMed  Google Scholar 

  10. Dinges DF, Powell JW. Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav Res Methods Instrum Comput. 1985;17(6):652–5.

    Article  Google Scholar 

  11. Farrin L, Hull L, Unwin C, Wykes T, David A. Effects of depressed mood on objective and subjective measures of attention. J Neuropsychiatry Clin Neurosci. 2003;15(1):98–104. https://doi.org/10.1176/jnp.15.1.98.

    Article  PubMed  Google Scholar 

  12. Findley L, Unverzagt M, Guchu R, Fabrizio M, Buckner J, Suratt P. Vigilance and automobile accidents in patients with sleep apnea or narcolepsy. Chest. 1995;108(3):619–24.

    Article  CAS  PubMed  Google Scholar 

  13. First MB, Spitzer R, Gibbon M, Williams JBW. Structured clinical interview for DSM-IV-TR axis I disorders, research version, patient edition (SCID-I/P). New York: Biometrics Research, New York State Psychiatric Institute; 2002.

    Google Scholar 

  14. Fitzgerald CT, Messias E, Buysse DJ. Teen sleep and suicidality: results from the youth risk behavior surveys of 2007 and 2009. J Clin Sleep Med (JCSM). 2011;7(4):351–6. https://doi.org/10.5664/JCSM.1188.

    Article  Google Scholar 

  15. Fried EI, Nesse RM. The impact of individual depressive symptoms on impairment of psychosocial functioning. PLoS ONE. 2014;9(2):e90311. https://doi.org/10.1371/journal.pone.0090311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hawkins DR, Taub JM, Van de Castle RL. Extended sleep (hypersomnia) in young depressed patients. Am J Psychiatry. 1985;142(8):905–10. https://doi.org/10.1176/ajp.142.8.905.

    Article  CAS  PubMed  Google Scholar 

  17. Huang R-S, Jung T-P, Delorme A, Makeig S. Tonic and phasic electroencephalographic dynamics during continuous compensatory tracking. NeuroImage. 2008;39(4):1896–909. https://doi.org/10.1016/j.neuroimage.2007.10.036.

    Article  PubMed  Google Scholar 

  18. Huang R-S, Jung T-P, Makeig S. Analyzing event-related brain dynamics in continuous compensatory tracking tasks. Annu Int Conf IEEE Eng Med Biol Soc. 2005;6:5750–3. https://doi.org/10.1109/IEMBS.2005.1615794.

    Article  Google Scholar 

  19. Huber R, Mäki H, Rosanova M, Casarotto S, Canali P, Casali AG, Massimini M. Human cortical excitability increases with time awake. Cereb Cortex (New York, N.Y.: 1991). 2013;23(2):332–8. https://doi.org/10.1093/cercor/bhs014.

    Article  Google Scholar 

  20. Hulse BK, Landsness EC, Sarasso S, Ferrarelli F, Guokas JJ, Wanger T, Tononi G. A postsleep decline in auditory evoked potential amplitude reflects sleep homeostasis. Clin Neurophysiol. 2011;122(8):1549–55. https://doi.org/10.1016/j.clinph.2011.01.041.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hung C-S, Sarasso S, Ferrarelli F, Riedner B, Ghilardi MF, Cirelli C, Tononi G. Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep. 2013;36(1):59–72. https://doi.org/10.5665/sleep.2302.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jaussent I, Bouyer J, Ancelin M-L, Akbaraly T, Pérès K, Ritchie K, Dauvilliers Y. Insomnia and daytime sleepiness are risk factors for depressive symptoms in the elderly. Sleep. 2011;34(8):1103–10. https://doi.org/10.5665/SLEEP.1170.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540–5.

    Article  CAS  Google Scholar 

  24. Johns MW. Reliability and factor analysis of the Epworth Sleepiness Scale. Sleep. 1992;15(4):376–81.

    Article  CAS  PubMed  Google Scholar 

  25. Kaplan KA, Plante DT, Cook JD, Soehner AM, Harvey AG. Validation of the Hypersomnia Severity Index (HSI). In: Presented at the Sleep: the 29th annual meeting of the associated professional sleep societies, Seattle; 2015.

  26. Kaplan Katherine A, Gruber J, Eidelman P, Talbot LS, Harvey AG. Hypersomnia in inter-episode bipolar disorder: does it have prognostic significance? J Affect Disord. 2011;132(3):438–44. https://doi.org/10.1016/j.jad.2011.03.013.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kofmel NC, Schmitt WJ, Hess CW, Gugger M, Mathis J. Sleepiness and performance is disproportionate in patients with non-organic hypersomnia in comparison to patients with narcolepsy and mild to moderate obstructive sleep apnoea. Neuropsychobiology. 2014;70(3):189–94. https://doi.org/10.1159/000365486.

    Article  PubMed  Google Scholar 

  28. Lim J, Dinges DF. Sleep deprivation and vigilant attention. Ann N Y Acad Sci. 2008;1129:305–22. https://doi.org/10.1196/annals.1417.002.

    Article  PubMed  Google Scholar 

  29. Littner MR, Kushida C, Wise M, Davila DG, Morgenthaler T, Lee-Chiong T, Standards of Practice Committee of the American Academy of Sleep Medicine. Practice parameters for clinical use of the multiple sleep latency test and the maintenance of wakefulness test. Sleep. 2005;28(1):113–21.

    Article  PubMed  Google Scholar 

  30. Lopez R, Doukkali A, Barateau L, Evangelista E, Chenini S, Jaussent I, Dauvilliers Y. Test–retest reliability of the multiple sleep latency test in central disorders of hypersomnolence. Sleep. 2017;40(12):164. https://doi.org/10.1093/sleep/zsx164.

    Article  Google Scholar 

  31. Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ. Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci USA. 1997;94(20):10979–84.

    Article  CAS  PubMed  Google Scholar 

  32. Makeig S, Jung TP, Sejnowski TJ. Awareness during drowsiness: dynamics and electrophysiological correlates. Can J Exp Psychol (Revue Can Psychol Exp). 2000;54(4):266–73.

    Article  CAS  Google Scholar 

  33. Mensen A, Khatami R. Advanced EEG analysis using threshold-free cluster-enhancement and non-parametric statistics. NeuroImage. 2013;67:111–8. https://doi.org/10.1016/j.neuroimage.2012.10.027.

    Article  PubMed  Google Scholar 

  34. Ohayon MM, Dauvilliers Y, Reynolds CF III. Operational definitions and algorithms for excessive sleepiness in the general population: implications for DSM-5 nosology. Arch Gen Psychiatry. 2012;69(1):71. https://doi.org/10.1001/archgenpsychiatry.2011.1240.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Plante DT. Sleep propensity in psychiatric hypersomnolence: a systematic review and meta-analysis of multiple sleep latency test findings. Sleep Med Rev. 2017;31:48–57. https://doi.org/10.1016/j.smrv.2016.01.004.

    Article  PubMed  Google Scholar 

  36. Plante DT, Cook JD, Barbosa LS, Goldstein MR, Prairie ML, Smith RF, Riedner BA. Establishing the objective sleep phenotype in hypersomnolence disorder with and without comorbid major depression. Sleep. 2019. https://doi.org/10.1093/sleep/zsz060 (in press).

    Article  PubMed  Google Scholar 

  37. Plante DT, Finn LA, Hagen EW, Mignot E, Peppard PE. Subjective and objective measures of hypersomnolence demonstrate divergent associations with depression among participants in the Wisconsin Sleep Cohort Study. J Clin Sleep Med (JCSM). 2016;12(4):571–8. https://doi.org/10.5664/jcsm.5694.

    Article  Google Scholar 

  38. Poudel GR, Innes CR, Bones PJ, Jones RD. The relationship between behavioural microsleeps, visuomotor performance and EEG theta. In: 2010 annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). New York: IEEE; 2010. p. 4452–4455.

  39. Roberts RE, Shema SJ, Kaplan GA, Strawbridge WJ. Sleep complaints and depression in an aging cohort: a prospective perspective. Am J Psychiatry. 2000;157(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  40. Robertson IH, Manly T, Andrade J, Baddeley BT, Yiend J. “Oops!”: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia. 1997;35(6):747–58.

    Article  CAS  PubMed  Google Scholar 

  41. Rye DB, Bliwise DL, Parker K, Trotti LM, Saini P, Fairley J, Freeman A, Garcia PS, Owens MJ, Ritchie JC, Jenkins A. Modulation of vigilance in the primary hypersomnias by endogenous enhancement of GABAA receptors. Sci Transl Med. 2012;4(161):161ra151. https://doi.org/10.1126/scitranslmed.3004685.

    Article  CAS  PubMed  Google Scholar 

  42. Sakurai H, Uchida H, Abe T, Nakajima S, Suzuki T, Pollock BG, Mimura M. Trajectories of individual symptoms in remitters versus non-remitters with depression. J Affect Disord. 2013;151(2):506–13. https://doi.org/10.1016/j.jad.2013.06.035.

    Article  PubMed  Google Scholar 

  43. Soehner AM, Kaplan KA, Harvey AG. Prevalence and clinical correlates of co-occurring insomnia and hypersomnia symptoms in depression. J Affect Disord. 2014;167:93–7. https://doi.org/10.1016/j.jad.2014.05.060.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Strijkstra AM, Beersma DGM, Drayer B, Halbesma N, Daan S. Subjective sleepiness correlates negatively with global alpha (8–12 Hz) and positively with central frontal theta (4–8 Hz) frequencies in the human resting awake electroencephalogram. Neurosci Lett. 2003;340(1):17–20.

    Article  CAS  PubMed  Google Scholar 

  45. Thomann J, Baumann CR, Landolt H-P, Werth E. Psychomotor vigilance task demonstrates impaired vigilance in disorders with excessive daytime sleepiness. J Clin Sleep Med (JCSM). 2014;10(9):1019–24. https://doi.org/10.5664/jcsm.4042.

    Article  Google Scholar 

  46. Trotti LM. Characterizing sleepiness: are we drawing the right line in the sand? J Clin Sleep Med (JCSM). 2017;13(12):1369–70. https://doi.org/10.5664/jcsm.6824.

    Article  Google Scholar 

  47. Van Schie MKM, Thijs RD, Fronczek R, Middelkoop HAM, Lammers GJ, Van Dijk JG. Sustained attention to response task (SART) shows impaired vigilance in a spectrum of disorders of excessive daytime sleepiness. J Sleep Res. 2012;21(4):390–5. https://doi.org/10.1111/j.1365-2869.2011.00979.x.

    Article  PubMed  Google Scholar 

  48. Worthington J, Fava M, Davidson K, Alpert J, Nierenberg AA, Rosenbaum JF. Patterns of improvement in depressive symptoms with fluoxetine treatment. Psychopharmacol Bull. 1995;31(2):223–6.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Institutes of Health (K23MH099234). It was also supported by grants from the American Sleep Medicine Foundation (76-JF-12) and Brain and Behavior Research Foundation (19193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily C. Forscher.

Ethics declarations

Conflict of interest

Emily C. Forscher declares that she/he has no conflict of interest. Michael L. Prairie declares that she/he has no conflict of interest. Jesse D. Cook declares that she/he has no conflict of interest. Sydney L. Notermann declares that she/he has no conflict of interest. David T. Plante has received royalties from Cambridge University Press and has served as a consultant for Teva Pharmaceuticals Australia and Jazz Pharmaceuticals.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forscher, E.C., Prairie, M.L., Cook, J.D. et al. Utility of the Compensatory Tracking Task for Objective Differentiation of Hypersomnolence in Depression: A High-Density EEG Investigation. Sleep Vigilance 3, 49–56 (2019). https://doi.org/10.1007/s41782-019-00062-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41782-019-00062-8

Keywords

Navigation