Log in

Nanostructured Gd2Zr2O7: a promising thermal barrier coating with high resistance to CaO–MgO–Al2O3–SiO2 corrosion

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Nanostructured Gd2Zr2O7(NGZO) thermal barrier coatings (TBCs) have great potential applications in airplane engines and hot sections of gas turbine engines operating in volcanic ash-exposed or dust-laden environments. In this paper, NGZO is deposited on IN738LC/CoNiCrAlY using the atmospheric plasma spraying (APS) technique. Also, yttria-stabilized zirconia (YSZ) was utilized to produce conventional TBC. The CaO–MgO–Al2O3–SiO2 (CMAS) corrosion resistance and phase stability of IN738LC/CoNiCrAlY/YSZ (YSZ: ZrO2 4 mol.% Y2O3 as the conventional TBCs) and IN738LC/CoNiCrAlY/NGZO (NGZO: ZrO2 33 mol.% Gd2O3 as the new generation of TBCs) were assessed at 1250 ˚C by 5-h cycles with and without the presence of CMAS particles. The X-ray diffraction (XRD) analysis and microstructural investigations by field emission scanning electron microscopy (FESEM) equipped with an energy-dispersive X-ray spectroscope (EDS) revealed that NGZO coatings had high resistance against penetration of CMAS particles by forming an accelerate non-permeable Gd8Ca2(SiO4)6. Also, the qualitative and quantitative XRD analyses by the Rietveld refinement method indicated that the NGZO coating maintained its phase stability during the thermal cycles after 20 h of exposure to 1250 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. G. Xu, L. Yang, and Y. Zhou.:A coupled theory for deformation and phase transformation due to CMAS infiltration and corrosion of thermal barrier coatings. Corrosion Science 109690 (2021)

  2. X. Shan, H. Cai, L. Luo, F. Guo, X. Zhao, and P. **ao.:Influence of pore characteristics of air plasma sprayed thermal barrier coatings on calcia-magnesia-alumino-silicate (CMAS) attack behavior. Corrosion Science 109636 (2021)

  3. Bahamirian, M., Hadavi, S., Farvizi, M., Keyvani, A., Rahimipour, M.: Hot corrosion behavior of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 TBCs in CMAS: CaO-MgO-Al2O3-SiO2. J. Aust. Ceram. Soc. 57, 215–224 (2021)

    Article  CAS  Google Scholar 

  4. Wang, H., Bakal, A., Zhang, X., Tarwater, E., Sheng, Z., Fergus, J.W.: CaO-MgO-Al2O3-SiO2 (CMAS) corrosion of Gd2Zr2O7 and Sm2Zr2O7. J. Electrochem. Soc. 163, C643–C648 (2016)

    Article  CAS  Google Scholar 

  5. P. Schilke, “Advanced gas turbine materials and coatings,” Report GER-3569G, General Electric Company, Schenectady, NY (2004)

  6. Cao, X., Vassen, R., Stoever, D.: Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24(1), 1–10 (2004)

    Article  CAS  Google Scholar 

  7. Bahamirian, M., Hadavi, S.M.M., Farvizi, M., Keyvani, A., Rahimipour, M.R.: Thermal durability of YSZ/nanostructured Gd2Zr2O7TBC undergoing thermal cycling. Oxid. Met. 92(5–6), 401–421 (2019)

    Article  CAS  Google Scholar 

  8. Krämer, S., Yang, J., Levi, C.G.: Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. J. Am. Ceram. Soc. 91(2), 576–583 (2008)

    Article  Google Scholar 

  9. Vaßen, R., Jarligo, M.O., Steinke, T., Mack, D.E., Stöver, D.: Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 205(4), 938–942 (2010)

    Article  Google Scholar 

  10. Krämer, S., et al.: Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Mater. Sci. Eng., A 490(1–2), 26–35 (2008)

    Article  Google Scholar 

  11. Zhou, X., et al.: Failure of plasma sprayed nano-zirconia-based thermal barrier coatings exposed to molten CaO–MgO–Al2O3–SiO2 deposits. J. Am. Ceram. Soc. 102(10), 6357–6371 (2019)

    Article  CAS  Google Scholar 

  12. Deng, W., Wang, H., Bakal, A., Roebbecke, K., Fergus, J.: CMAS corrosion behavior of gadolinium zirconate thermal barrier coating materials. ECS Trans. 75(28), 11 (2017)

    Article  CAS  Google Scholar 

  13. Bahamirian, M., Hadavi, S., Farvizi, M., Rahimipour, M., Keyvani, A.: Enhancement of hot corrosion resistance of thermal barrier coatings by using nanostructured Gd2Zr2O7coating. Surf. Coat. Technol. 360, 1–12 (2019)

    Article  CAS  Google Scholar 

  14. Li, M., et al.: Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance. J. Eur. Ceram. Soc. 37(10), 3425–3434 (2017)

    Article  CAS  Google Scholar 

  15. Cullity, B.D., Weymouth, J.W.: Elements of X-ray diffraction. Am. J. Phys. 25(6), 394–395 (1957)

    Article  Google Scholar 

  16. S. Bose and S. Bose.:Chapter 7–thermal barrier coatings (TBCs). High Temperature Coatings 155–232 (2007)

  17. F.-W. Bach, K. Möhwald, A. Laarmann, and T. Wenz.:Modern surface technology. John Wiley & Sons (2006)

  18. Kucuk, A., Berndt, C., Senturk, U., Lima, R., Lima, C.: Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. I: four point bend test. Mater. Sci. Eng. A 284(1), 29–40 (2000)

    Article  Google Scholar 

  19. Ilavsky, J., Stalick, J.K.: Phase composition and its changes during annealing of plasma-sprayed YSZ. Surf. Coat. Technol. 127(2), 120–129 (2000)

    Article  CAS  Google Scholar 

  20. Wang, L., et al.: Influence of pores on the thermal insulation behavior of thermal barrier coatings prepared by atmospheric plasma spray. Mater. Des. 32(1), 36–47 (2011)

    Article  Google Scholar 

  21. Paul, S., Cipitria, A., Tsipas, S., Clyne, T.: Sintering characteristics of plasma sprayed zirconia coatings containing different stabilisers. Surf. Coat. Technol. 203(8), 1069–1074 (2009)

    Article  CAS  Google Scholar 

  22. Cipitria, A., Golosnoy, I., Clyne, T.: A sintering model for plasma-sprayed zirconia TBCs. Part I: free-standing coatings. Acta Mater. 57(4), 980–992 (2009)

    Article  CAS  Google Scholar 

  23. Racek, O., Berndt, C.: Mechanical property variations within thermal barrier coatings. Surf. Coat. Technol. 202(2), 362–369 (2007)

    Article  CAS  Google Scholar 

  24. Lima, R., Kucuk, A., Berndt, C.: Integrity of nanostructured partially stabilized zirconia after plasma spray processing. Mater. Sci. Eng., A 313(1), 75–82 (2001)

    Article  Google Scholar 

  25. Keyvani, A., Mostafavi, N., Bahamirian, M., Sina, H., Rabiezadeh, A.: Synthesis and phase stability of zirconia-lanthania-ytterbia-yttria nanoparticles; a promising advanced TBC material. J. Asian Ceramic Soc. 8(2), 336–344 (2020)

    Article  Google Scholar 

  26. Bahamirian, M., Hadavi, S., Farvizi, M., Rahimipour, M., Keyvani, A.: Phase stability of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 compound at 1100° C and 1300°C for advanced TBC applications. Ceram. Int. 45(6), 7344–7350 (2019)

    Article  CAS  Google Scholar 

  27. Khor, K., Yang, J.: Lattice parameters, tetragonality (ca) and transformability of tetragonal zirconia phase in plasma-sprayed ZrO2-Er2O3 coatings. Mater. Lett. 31(1–2), 23–27 (1997)

    Article  CAS  Google Scholar 

  28. Sheu, T.S., Tien, T.Y., Chen, I.W.: Cubic-to-tetragonal (t’) transformation in zirconia-containing Systems. J. Am. Ceram. Soc. 75(5), 1108–1116 (1992)

    Article  CAS  Google Scholar 

  29. Srinivasan, R., De Angelis, R.J., Ice, G., Davis, B.H.: Identification of tetragonal and cubic structures of zirconia using synchrotron x-radiation source. J. Mater. Res. 6(6), 1287–1292 (1991)

    Article  CAS  Google Scholar 

  30. J. Felsche.:The crystal chemistry of the rare-earth silicates. Springer (1973)

  31. Drexler, J.M., Ortiz, A.L., Padture, N.P.: Composition effects of thermal barrier coating ceramics on their interaction with molten Ca–Mg–Al–silicate (CMAS) glass. Acta Mater. 60(15), 5437–5447 (2012)

    Article  CAS  Google Scholar 

  32. Drexler, J.M., Chen, C.-H., Gledhill, A.D., Shinoda, K., Sampath, S., Padture, N.P.: Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca–Mg–Al–silicate glass. Surf. Coat. Technol. 206(19), 3911–3916 (2012)

    Article  CAS  Google Scholar 

  33. Gledhill, A.D., Reddy, K.M., Drexler, J.M., Shinoda, K., Sampath, S., Padture, N.P.: Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings. Mater. Sci. Eng., A 528(24), 7214–7221 (2011)

    Article  CAS  Google Scholar 

  34. Drexler, J.M., et al.: Jet engine coatings for resisting volcanic ash damage. Adv. Mater. 23(21), 2419–2424 (2011)

    Article  CAS  Google Scholar 

  35. Wang, L., et al.: Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium–magnesium–alumina–silicate (CMAS) attack. Ceram. Int. 41(9), 11662–11669 (2015)

    Article  CAS  Google Scholar 

  36. Theunissen, G., Winnubst, A., Burggraaf, A.: Surface and grain boundary analysis of doped zirconia ceramics studied by AES and XPS. J. Mater. Sci. 27(18), 5057–5066 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the honorable managing director of the “Barad Technology Co” (a new technology-based firm, https://www.baradtechno.ir), Dr. Mahmoud Shahriari, and all of the personnel who work in the research and development department of the company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bahamirian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahamirian, M. Nanostructured Gd2Zr2O7: a promising thermal barrier coating with high resistance to CaO–MgO–Al2O3–SiO2 corrosion. J Aust Ceram Soc 59, 165–177 (2023). https://doi.org/10.1007/s41779-022-00822-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00822-2

Keywords

Navigation