Log in

Spectral Albedo Estimation of Snow Covers in Pakistan Using Landsat Data

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Accurate snow spectral albedo measurements from satellite data can essentially help to determine the changes over the snow surface area. In the current study, spectral snow albedo is measured over the northern region of Pakistan using spatio-temporal imagery datasets taken by Landsat satellite series equipped with TM and ETM+ sensors. An Automatic Cloud Cover Assessment (ACCA) algorithm is used to mask cloudy pixels from further processing. Furthermore, an image independent model, Second Simulation of the Satellite Signal in the Solar Spectrum (6S) is used in the current research work to atmospherically correct the satellite data. The snow cover albedo of northern Pakistan is estimated using pixel values prior to correction, ACCA output values, and 6S model output values. The results of the study show that highest albedo values are estimated using Landsat band 4 data with albedo model. The results of the study also show that the albedo values measured (band 4) in the year 1992 (0.989) are reduced in the year 2000 (0.931). It is expected that the results of the study could be utilized to predict climatic variations for spring runoff estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bhutiyani M, Kale V, Pawar N (2010) Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int J Climatol 30:535–548

    Google Scholar 

  • Butt MJ (2012) Characteristics of snow cover in the Hindukush, Karakoram and Himalaya (HKH) region using Landsat satellite data. Hydrological Processes 26:3689–3698. https://doi.org/10.1002/hyp.8375

    Article  Google Scholar 

  • Butt MJ (2013) Exploitation of Landsat data for Snow Zonation Map** in Hindukush, Karakoram and Himalaya (HKH) Region of Pakistan. Hydrol Sci J 58(5):1088–1096. https://doi.org/10.1080/02626667.2013.799774

    Article  Google Scholar 

  • Chander G, Markham BL (2003) Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Trans Geosci Remote Sens 41(11):2674–2677

    Article  Google Scholar 

  • Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:893–903

    Article  Google Scholar 

  • Cheng Q, Shen H, Zhang L, Yuan Q, Zeng C (2014) Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model. ISPRS J Photogramm Remote Sens 92:54–68

    Article  Google Scholar 

  • Csiszar I, Gutman G (1999) Map** global land surface albedo from NOAA AVHRR. J Geophys Res 104:6215–6228

    Article  Google Scholar 

  • Déry SJ, Brown RD (2007) Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys Res Lett. https://doi.org/10.1029/2007gl031474

    Article  Google Scholar 

  • Dimri AP, Chevuturi A (2016) Western disturbances—an Indian meteorological perspective. Springer, Switzerland

    Book  Google Scholar 

  • Dimri AP, Dash SK (2012) Wintertime climatic trends in the western Himalayas. Clim Change 111(3–4):775–800

    Article  Google Scholar 

  • Dobhal DP, Mehta M, Srivastava D (2013) Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya, India. J Glaciol 59(217):961–971

    Article  Google Scholar 

  • Dozier J (1989) Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens Environ 28:9–22

    Article  Google Scholar 

  • Dozier J, Marks D (1987) Snow map** and classification from Landsat Thematic Mapper. Ann Glaciol 9:97–103

    Article  Google Scholar 

  • Fletcher CG, Kushner PJ, Hall A, Qu X (2009) Circulation responses to snow albedo feedback in climate change. Geophys Res Lett 36:L09702

    Article  Google Scholar 

  • Gao Y, **e H, Lu N, Yao T, Liang T (2010) Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra-Aqua MODIS and Aqua AMSR-E measurements. J Hydrol 385(1–4):23–35

    Article  Google Scholar 

  • Graversen RG, Wang M (2009) Polar amplification in a coupled climate model with locked albedo. Clim Dyn 33:629–643

    Article  Google Scholar 

  • Greuell W, de Wildt MD (1999) Anisotropic reflection by melting glacier ice: measurements and parameterizations in Landsat TM bands 2 and 4. Remote Sens Environ 70(3):265–277

    Article  Google Scholar 

  • Grünewald T, Bühler Y, Lehning M (2014) Elevation dependency of mountain snow depth. Cryosphere 8(6):2381–2394

    Article  Google Scholar 

  • Gupta RP, Ghosh A, Haritashya UK (2007) Empirical relationship between near-IR reflectance of melting seasonal snow and environmental temperature in a Himalayan basin. Remote Sens Environ 107:402–413

    Article  Google Scholar 

  • Gurung DR, Maharjan SB, Shrestha AB, Shrestha MS, Bajracharya SR, Murthy MSR (2017) Climate and topographic controls on snow cover dynamics in the Hindu Kush Himalaya. Int J Climatol 37(10):3873–3882

    Article  Google Scholar 

  • Haeberli W (2004) Glaciers and ice caps: historical background and strategies of world-wide monitoring. In: Bamber JL, Payne AJ (eds) Mass balance of the cryosphere: observations and modelling of contemporary and future change. Cambridge University Press, Cambridge, pp 559–578

    Chapter  Google Scholar 

  • Haeberli W, Whiteman C, Shroder JF (eds) (2014) Snow and ice-related hazards, risks and disasters. Academic Press, Waltham

    Google Scholar 

  • Hall DK, Martinec J (1985) Remote sensing of ice and snow. Chapman and Hall, London, p 189

    Book  Google Scholar 

  • Hall DK, Riggs GA, Foster JL, Kumar SV (2010) Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sens Environ 114(3):496–503

    Article  Google Scholar 

  • Hu B, Lucht W, Strahler AH (1999) The interrelationship of atmospheric correction of reflectances and surface BRDF retrieval: a sensitivity study. IEEE Trans Geosci Remote Sens 36:724–738

    Google Scholar 

  • Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, **a Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9781107415324

  • Joshi R, Kumar K, Pandit J, Palni LMS (2015) Variations in the seasonal snow cover area (SCA) for Upper Bhagirathi Basin, India. In: Kumar K, Palni L (eds) JoshiR. Dynamics of climate change and water resources of Northwestern Himalaya. Springer, Cham, pp 9–21

    Google Scholar 

  • Kääb A, Paul F, Maisch M, Hoelzle M, Haeberli W (2002) The new remote-sensing-derived Swiss glacier inventory: II. First results. Ann Glaciol 34:362–366

    Article  Google Scholar 

  • Kaser G, Großhauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci 107:20223–20227

    Article  Google Scholar 

  • Kasturirangan K, Navalgund RR, Ajai (2013) Observed changes in the Himalayan–Tibetan glaciers. Fate of Mountain Glaciers in the Anthropocene Pontifical Academy of Sciences, Vatican City

    Google Scholar 

  • Khromova TE, Dyurgerov M, Barry RG (2003) Late-twentieth century changes in glacier extent in the Ak-shirak Range, Central Asia, determined from historical data and ASTER imagery. Geophys Res Lett 30(16):1863

    Article  Google Scholar 

  • Knap WH, Brock BW, Oerlemans J, Willis IC (1999) Comparison of Landsat TM derived and ground-based albedos of Haut Glacier d’Arolla, Switzerland. Int J Remote Sens 20(17):3293–3310

    Article  Google Scholar 

  • Kukla GJ, Kukla HJ (1974) Incresead surface albedo in the northern hemisphere. Science 189:709–714

    Article  Google Scholar 

  • Kulkarni AV, Rathore BP, Singh SK, Bahuguna IM (2011) Understanding changes in the Himalayan cryosphere using remote sensing techniques. Int J Remote Sens 32(3):601–615

    Article  Google Scholar 

  • Li Z, Garand L (1994) Estimation of surface albedo from space: a parameterization for global application. J Geophys Res 99:8335–8350

    Article  Google Scholar 

  • Li X, Shen H, Zhang L, Zhang H, Yuan Q, Yang G (2014) Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning. IEEE Trans Geosci Remote Sens 52(11):7086–7098

    Article  Google Scholar 

  • Liang S, Fang H, Chen M (2001) Atmospheric correction of Landsat ETM+ land surface imagery-part I: methods. IEEE Trans Geosci Remote Sens 39(11):2490–2498

    Article  Google Scholar 

  • López-Burgos V, Gupta HV, Clark M (2013) Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach. Hydrol Earth Syst Sci 17(5):1809–1823

    Article  Google Scholar 

  • Maisch M (2000) The long-term signal of climate change in the Swiss Alps: glacier retreat since the end of the Little Ice Age and future ice decay scenarios. Geografia Fisica e Dinamica Quaternaria 23(2):139–152

    Google Scholar 

  • Negi HS, Shekhar MS, Gusain HS, Ganju A (2018) Winter climate and snow cover variability over north-west Himalaya. In: Goel P, Ravindra R, Chattopadhyay S (eds) Science and geopolitics of the white world. Springer, Cham, pp 127–142

    Chapter  Google Scholar 

  • Oleson KW, Bonan GB, Schaaf CB, Gao F, ** Y, Strahler AH (2003) Assessment of global climate model land surface albedo using MODIS data. Geophys Res Lett. https://doi.org/10.1029/2002gl016749

    Article  Google Scholar 

  • Ollinger SV, Richardson AD, Martin ME, Hollinger DY, Frolking SE, Reich PB et al (2008) Canopy nitrogen, carbon assimilation and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. Proc Natl Acad Sci USA 105:19335–19340

    Article  Google Scholar 

  • Parajka J, Pepe M, Rampini A, Rossi S, Blöschl G (2010) A regional snow-line method for estimating snow cover from MODIS during cloud cover. J Hydrol 381(3–4):203–212

    Article  Google Scholar 

  • Paudel KP, Andersen P (2011) Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology. Remote Sens Environ 115(5):1234–1246

    Article  Google Scholar 

  • Paul F, Huggel C, Kääb A (2004a) Combining satellite multispectral image data and a digital elevation model for map** of debris-covered glaciers. Remote Sens Environ 89(4):510–518

    Article  Google Scholar 

  • Paul F, Kääb A, Maisch M, Kellenberger T, Haeberli W (2004b) Rapid disintegration of Alpine glaciers observed with satellite data. Geophys Res Lett 31(21):L21402

    Article  Google Scholar 

  • Qu X, Hall A (2007) What controls the strength of snow-albedo feedback? J Clim 20:3971–3981

    Article  Google Scholar 

  • Rathore BP, Singh SK, Jani P, Bahuguna IM, Brahmbhatt R, Rajawat AS, Randhawa SS, Vyas A (2018) Monitoring of snow cover variability in Chenab Basin using IRS AWiFS sensor. J Indian Soc Remote Sens. https://doi.org/10.1007/s12524-018-0797-8

    Article  Google Scholar 

  • Robinson N, Regetz J, Guralnick RP (2014) EarthEnv-DEM90: a nearly-global, voidfree, multi-scale smoothed, 90 m digital elevation model from fused ASTER and SRTM data. ISPRS J Photogramm Remote Sens 87:57–67

    Article  Google Scholar 

  • Roesch A, Schaaf CB, Gao F (2004) Use of Moderate-Resolution Imaging Spectroradiometer bidirectional reflectance distribution function products to enhance simulated surface albedos. J Geophys Res 109(D12):D12105

    Article  Google Scholar 

  • SAC (2016) Monitoring snow and glaciers of Himalayan region. Space Applications Centre, ISRO, Ahmedabad (ISBN: 978-93-82760-24-5)

    Google Scholar 

  • Schaaf CL, Martonchik J, Pinty B, Govaerts Y, Gao F, Lattanzio A et al (2008) Retrieval of surface albedo from satellite sensors. In: Liang S (ed) Advances in land remote sensing: system, modeling, inversion and application. Springer, Dordrecht, pp 219–243

    Chapter  Google Scholar 

  • Shukla S, Kansal ML, Jain SK (2017) Snow cover area variability assessment in the upper part of the Satluj river basin in India. Geocarto Int 32(11):1285–1306 (Springer 978-1-4020-6449-4)

    Article  Google Scholar 

  • Smith T, Bookhagen B (2018) Changes in seasonal snow water equivalent distribution in High Mountain Asia (1987 to 2009). Sci Adv 4(1):e1701550

    Article  Google Scholar 

  • Snehmani, Singh MK, Gupta RD, Bhardwaj A, Joshi PK (2015) Remote sensing of mountain snow using active microwave sensors: a review. Geocarto Int 30(1):1–27

    Article  Google Scholar 

  • Snehmani, Dharpure JK, Kochhar I, Hari Ram RP, Ganju A (2016) Analysis of snow cover and climatic variability in Bhaga basin located in western Himalaya. Geocarto Int 31(10):1094–1107

    Article  Google Scholar 

  • Snyder JP (1987). Map projections. A working manual. US Geological Survey professional paper 1395. United States Geological Survey, Reston

  • Souma K, Wang YQ (2010) A comparison between the effects of snow albedo and infiltration of melting water of Eurasian snow on East Asian summer monsoon rainfall. J Geophys Res Atmos 115:D02115

    Article  Google Scholar 

  • Srinivasulu J, Kulkarni AV (2004) Estimation of spectral reflectance of snow from IRS-1D LISS-III sensor over the Himalayan terrain. Proc Indian Acad Sci Earth Planet Sci 113(1):117–128

    Google Scholar 

  • Stigter EE, Wanders N, Saloranta TM, Shea JM, Bierkens MF, Immerzeel WW (2017) Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment. Cryosphere 11(4):1647–1664

    Article  Google Scholar 

  • Tekeli AE, Sönmez I, Erdi E (2016) Snow-covered area determination based on satellitederived probabilistic snow cover maps. Arab J Geosci 9(3):198

    Article  Google Scholar 

  • Thayyen RJ, Dimri AP (2018) Slope environmental lapse rate (SELR) of temperature in the monsoon regime of the western Himalaya. Front Environ Sci 6:42

    Article  Google Scholar 

  • Thayyen RJ, Gergan JT (2010) Role of glaciers in watershed hydrology: a preliminary study of a” Himalayan catchment”. Cryosphere 4(1):115–128

    Article  Google Scholar 

  • Tian Y, Dickinson RE, Zhou L, Myneni RB, Friedl M, Schaaf CB et al (2004) Land boundary conditions from MODIS data and consequences for the albedo of a climate model. Geophys Res Lett. https://doi.org/10.1029/2003gl019104

    Article  Google Scholar 

  • Viterbo P, Betts AK (1999) Impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow. J Geophys Res 104:27803–27810

    Article  Google Scholar 

  • Wang W, Huang X, Deng J, **e H, Liang T (2014) Spatio-temporal change of snow cover and its response to climate over the Tibetan Plateau based on an improved daily cloudfree snow cover product. Remote Sens 7(1):169–194

    Article  Google Scholar 

  • ** snow and ice cover: a Normalised Difference Snow and Ice Index. Int J Remote Sens 22:2479–2487

    Article  Google Scholar 

  • Yang FL, Kumar A, Wang WQ, Juang HMH, Kanamitsu M (2001) Snow- lbedo feedback and seasonal climate variability over North America. J Clim 14:4245–4248

    Article  Google Scholar 

  • Zhang Y, Wang X, Chen Y (2012) An improved 6S code for atmospheric correction based on water vapor content. Adv Remote Sens 1(1):14–18. https://doi.org/10.4236/ars.2012.11002

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Pakistan Meteorological Department (PMD) for providing the data for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Jamil Butt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, M.J., Assiri, M.E. & Waqas, A. Spectral Albedo Estimation of Snow Covers in Pakistan Using Landsat Data. Earth Syst Environ 3, 267–276 (2019). https://doi.org/10.1007/s41748-019-00104-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-019-00104-1

Keywords

Navigation