Log in

Recent developments of piezoelectric motors with diverse operating principles

  • Review Paper
  • Published:
ISSS Journal of Micro and Smart Systems Aims and scope Submit manuscript

Abstract

This article presents an extensive review of the developments in the field of piezoelectric motors involving different operational concepts. The review is carried out for ultrasonic motors and surface acoustic wave motors using resonant vibrations of piezoelectric substrates. The traditional upbringings of ultrasonic motors using standing and travelling waves along with surface acoustic wave driven motors are presented. Further this research work gives a scope to understand the recent development of various driving principles and different characteristics of piezoelectric motors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  • Auld BA (1973) Acoustic fields and waves in solids, vol 1. Wiley, Mississauga

    Google Scholar 

  • Barth HV (1973) Ultrasonic drive motor. IBM Tech Discl Bull 16(7):2263

  • Behera B, Nemade HB, Trivedi S (2016) Modelling and finite element simulation of a dual friction-drive SAW motor using flat slider. In: IEEE Ultrasonics Symposium, pp 1–4

  • Campbell C (ed) (1989) Surface acoustic wave devices and their signal processing applications. Academic, Boston

    Google Scholar 

  • Cheng LP, Zhang GM, Zhang SY, Yu J, Shui XJ (2002) Miniaturization of surface acoustic waves rotary motor. Elsevier Ultrason 39:591–594

    Article  Google Scholar 

  • Feenstra PJ, Breedveld PC, Vermeulen MMP, Peeters FGP (2002) Modelling and experimental validation of a linear surface acoustic wave motor prototype. In: Proceedings of mechatronics, pp 24–26

  • Fujii Y, Kotani H, Masaya T, Mizuno T (2007) Surface acoustic wave linear motor using segment-structured diamond-like carbon films on contact surface. In: IEEE Ultrasonics Symposium. pp 2543–2546

  • Gu H, Ma D, Zhang S, Cheng L, Shui X (2008) Theoretical analysis of non-contact linear motors driven by surface acoustic waves. In: Proceedings of the IEEE, pp 3–6

  • Hirata H, Ueha S (1993) Characteristics estimation of a traveling wave type ultrasonic motor. lEEE Trans Ultrason Ferroelectr Freq Control 40:402–406

  • Koc B, Bouchilloux P, Uchino K (2000) Piezoelectric micromotor using a metal-ceramic composite structure. IEEE Trans Ultrason Ferroelectr Freq Control 47:836–843

    Article  Google Scholar 

  • Kurosawa MK (2009) Ultrasonic linear motor using travelling surface acoustic wave. In: Proceedings of IEEE ultrasonics symposium (IEEE Press), pp 1096–1105

  • Kurosawa M, Ueha S (1991) Hybrid transducer type ultrasonic motor. IEEE Trans Ultrason Ferroelectr Freq Control 38:89–92

    Article  Google Scholar 

  • Kurosawa MK, Takahashi M, Higuchi T (1996) Ultrasonic linear motor using surface acoustic waves. IEEE Trans Ultrason Ferroelectr Freq Control 43:901–906

    Article  Google Scholar 

  • Kurosawa MK, Kodaira O, Tsuchitoi Y, Higuchi T (1998a) Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators. IEEE Trans Ultrason Ferroelectr Freq Control 45:1188–1195

    Article  Google Scholar 

  • Kurosawa MK, Chiba M, Higuchi T (1998b) Evaluation of a surface acoustic wave motor with a multi-contact-point slider. Smart Mater Struct 7:305–311

    Article  Google Scholar 

  • Lavrinenko V, Nekrasov M (1965) Piezoelectric motor. USSR Patent 217,509 (In Russian)

  • Mamishev AV, Sundara-Rajan K, Yang F, Du Y, Zahn M (2004) Interdigital sensors and transducers. Proc IEEE 92:808–845

    Article  Google Scholar 

  • Morgan D (2007) Surface acoustic wave filters with applications to electronic communications and signal processing. Elsevier, Academics Press, Oxford

    Google Scholar 

  • Morita T (2003) Review on miniature piezoelectric motor. Sens Actuators A Phys 103:291–300

    Article  Google Scholar 

  • Morita T, Kurosawa MK, Higuchi T (1999) Simulation of surface acoustic wave motor with spherical slider. IEEE Trans Ultrason Ferroelectr Freq Control 46:929–934

    Article  Google Scholar 

  • Moroney RM, White RM, Howe RT (1990) Ultrasonic micromotors: physics and applications. In: Proceedings of the IEEE, pp 182–187

  • Nakamura Y, Kurosawa MK, Shigematsu T (2003) Effects of ceramic thin film coating on friction surfaces for surface acoustic wave linear motor. In: IEEE Ultrasonics Symposium (IEEE Press), pp 1766–1769

  • Osakabe N, Kurosawa M, Higuchi T, Shinoura O (1998) Surface acoustic wave linear motor using silicon slider. In: Proceedings of the IEEE (IEEE), pp 390–395

  • Royer D, Dieulesaint E (1996) Elastic waves in solids: free and guided propagation, vol 1. Springer, Northampton

    MATH  Google Scholar 

  • Royer D, Dieulesaint E (1999) Elastic waves in solids: generation, acousto-optic interaction, applications, vol 2. Springer, New York

    MATH  Google Scholar 

  • Sakano K, Kurosawa MK, Shigematsu T (2008) Surface acoustic wave motor with flat plane slider. In: Proceedings of the IEEE, pp 243–248

  • Sakano K, Kurosawa MK, Shigematsu T (2010) Driving characteristics of a surface acoustic wave motor using a flat-plane slider. Adv Robot 24:1407–1421

    Article  Google Scholar 

  • Sano A, Matsui Y, Shiokawa S (1997) A new manipulator based on surface acoustic wave streaming. In: IEEE ultrasonics symposium, pp 467–470

  • Sashida T (1985) Motor device utilizing ultrasonic oscillation. US Patent 4,562,374

  • Shigematsu T, Kurosawa MK (2008a) Friction drive of a SAW motor. Part III: modeling. IEEE Trans Ultrason Ferroelectr Freq Control 55:2266–2276

    Article  Google Scholar 

  • Shilton RJ, Langelier SM, Friend JR, Yeo LY (2012) Surface acoustic wave solid-state rotational micromotor. Appl Phys Lett 100(3):33503

    Article  Google Scholar 

  • Shigematsu T, Kurosawa MK (2008b) Friction drive of a SAW motor. Part I: measurements. IEEE Trans Ultrason Ferroelectr Freq Control 55:2005–2015

    Article  Google Scholar 

  • Shigematsu T, Kurosawa MK, Asai K (2003a) Sub-nanometer step** drive of surface acoustic wave motor. Proc IEEE 2:299–302

    Google Scholar 

  • Shigematsu T, Kurosawa MK, Asai K (2003b) Nanometer step** drives of surface acoustic wave motor. IEEE Trans Ultrason Ferroelectr Freq Control 50:376–385

    Article  Google Scholar 

  • Takahashi M, Kurosawa M, Higuchi T (1995) Direct frictional driven surface acoustic wave motor. In: The 8th international conference on solid-state sensors and actuators, and Eurosensors IX (Stockholm, Sweden), pp 3–6

  • Takano T, Tomikawa Y, Ogasawara T, Sugawara S, Konno M (1987) Ultrasonic motor using piezoelectric ceramic multi mode vibrators. In: Proceedings on ultrasonic electronics

  • Thompson M (1997) Surface-launched acoustic wave sensors: chemical sensing and thin-film characterization. Wiley, New York

    Google Scholar 

  • Tjeung RT, Hughes MS, Yeo LY, Friend JR (2011) Surface acoustic wave micro motor with arbitrary axis rotational capability. Appl Phys Lett 99:214101

    Article  Google Scholar 

  • Uchino K (1998) Piezoelectric ultrasonic motors: overview. Smart Mater Struct 7:273–285

    Article  Google Scholar 

  • Uchino K (ed) (2010) Advanced piezoelectric materials science and technology. Woodhead Publishing Limited, New Delhi

    Google Scholar 

  • Uchino K, Kato K, Imaizumi M, Tohda M (1988) Ultrasonic linear motors using piezoelectric actuators. J Jpn Ceram 96:1131–1136

    Article  Google Scholar 

  • Ueha S (1988) Present stae of art ultrasonic motors. Jpn J Appl Phys 28:3–6

    Article  Google Scholar 

  • Ueha S, Kurosawa M (1988) Ultrasonic motors. In: IEEE ultrasonics symposium, pp 519–522

  • Vives AA (ed) (2008) Piezoelectric transducers and applications. Springer, Berlin, Heidelberg

    Google Scholar 

  • Wakai T, Kuribayashi M and Higuchi T (1998) Transducer for an ultrasonic linear motor with flexible driving part. In: IEEE ultrasonics symposium, pp 683–686

  • Williams ALW, Brown WJ (1948) Piezoelectric motor. US Patent 2,439,499

  • Zhang G, Cheng L, Zhang S, Yu J, Shui X (2000) Surface acoustic wave rotation motor. IEEE Electron Lett 36:1437–1438

    Article  Google Scholar 

  • Zhao C (2011) Ultrasonic motors technologies and applications. Springer, Nan**g

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basudeba Behera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, B., Nemade, H.B. Recent developments of piezoelectric motors with diverse operating principles. ISSS J Micro Smart Syst 6, 173–185 (2017). https://doi.org/10.1007/s41683-017-0015-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41683-017-0015-x

Keywords

Navigation