Log in

Taphonomy, ichnology, and palaeoecology to distinguish event beds in varied shallow-water settings (Betic Cordillera, SE Spain)

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

The recognition of event beds is of paramount importance to reconstruct palaeoenvironments and to determine palaeoecological parameters. Tortonian and Tyrrhenian deposits have been studied in the Cabo de la Huerta section (Alicante, Southeastern Spain), where both open-platform and coastal deposits crop out. In the absence of sedimentary structures, we carried out ichnological, taphonomic, and palaeoecological analyses to determine the main processes involved in the material’s sedimentation. The Tortonian beds are made up of interbedded fine-grained and coarse-grained calcarenites. Event beds are mainly signalled by the presence of Ophiomorpha nodosa in coarse-grained calcarenites, typically produced by opportunistic crustaceans just after sedimentation. Background sedimentation is represented by fine-grained calcarenites without well-preserved burrows due to the soupy consistency of the substrate. The alternance of burrow-rich and burrow-poor beds reveals a decreasing-upward frequency of storm events pointing out a deepening-upward trend. The Tyrrhenian material records a regression from a sandy beach environment to a continental backshore. A thick skeletal concentration of resedimented shells from different habitats and with different residence times on the substrate was found between the beach and backshore deposits. Its features make it recognizable as a major storm deposit where a census assemblage is mixed together with a time-averaged one. Integrated palaeontological analysis is shown to be an excellent tool in diverse environmental settings in order to differentiate event beds, in particular where clear sedimentological criteria are not available.

Resumen

El reconocimiento de eventos sedimentarios es de gran importancia al reconstruir paleoambientes y determinar parámetros paleoecológicos. En la sección del Cabo de la Huerta (Alicante, Sureste de España) afloran materiales de edad Tortoniense y Tirreniense que representan, respectivamente, paleoambientes de plataforma abierta y costeros. Debido a la ausencia de claras estructuras sedimentarias, para determinar los procesos sedimentarios implicados en la formación de los depósitos, dicha sección se ha analizado desde el punto de vista icnológico, tafonómico y paleoecológico. En el tramo Tortoniense se alternan capas de calcarenitas diferenciadas por su heterogeneidad granulométrica. Las condiciones de background quedan registradas en las calcarenitas de grano más fino, donde la ausencia de pistas se justifica principalmente por la menor consistencia del fondo. Los eventos sedimentarios están marcados por abundantes y complejos retículos de Ophiomorpha nodosa en los niveles de calcarenitas de grano grueso. Estos niveles se hacen menos frecuentes desde la base hacia el techo de la serie, marcando así una tendencia transgresiva. El material Tirreniense representa una secuencia regresiva desde el foreshore hasta el backshore. Entre los depósitos de playa y la zona emergida se encuentra un potente nivel conglomerático, caracterizado por la abundancia de bioclastos resedimentados y con diferentes tiempos de exposición en el sustrato. Su variabilidad tafonómica y la mezcla de bioclastos de distintas profundidades y tipos de fondo permiten interpretar este nivel como un evento de tormenta especialmente enérgico, que ha resedimentado el material en la parte superior del foreshore. El análisis paleontológico integrado demuestra así ser una excelente herramienta en distintos contextos paleoambientales, permitiendo diferenciar y caracterizar eventos sedimentarios, especialmente aquellos donde la escasez de estructuras sedimentarias no permite aplicar criterios sedimentológicos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Geological map modified from Pina and Cano 2004

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abel, E., & Riedl, R. (1986). Fauna y flora del mar Mediterráneo: Una guía sistemática para biólogos y naturalistas (p. 860). Barcelona: Ediciones Omega.

    Google Scholar 

  • Aguilera, J.C., Alfaro, P., Andreu, J.M., Ayanz, J., Baeza-Carratalá, J.F., Beltrán, S., Benavente, D., Cano, M., Cañaveras, J.C., Corbí, H., Domènech, C., Espinosa, C., Espinosa, J., Estévez, A., García del Cura, M.A., González, J., González, M., Hernández, J., Lancis, C., López-Arcos, M., Martín, I., Martínez, B., Martínez-Martínez, J., Moruno, J., Muñoz, J., Muñoz, M.C., Olcina, J., Oliver, L., Ordóñez, S., Ortega, J.M., Parrés, J., Pina, J.A., Ramón, J., Romero, J., Sebastiá, R., Soria, J.M., Tomás, R., Tonda, E., De la Vara, A., & Yébenes, A. (2010). Ciudad de Alicante. Colección Geolodía 3. Alicante: Universidad de Alicante, pp. 24.

  • Aguirre, J., de Gibert, J. M., & Puga-Bernabéu, A. (2010). Proximal–distal ichnofabric changes in a siliciclastic shelf, Early Pliocene, Guadalquivir Basin, southwest Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 291, 328–337.

    Article  Google Scholar 

  • Alfaro, P. (1995). Neotectónica de la Cuenca del Bajo Segura (Cordillera Bética oriental). Ph.D. Thesis (p. 211). Alicante: University of Alicante.

    Google Scholar 

  • Alfaro, P., Andreu, J. M., Baeza-Carratalá, J. F., Benavente, D., Cañaveras, J. C., Corbí, H., et al. (2015). Geoyincana. Cabo de la Huerta. Alicante. Comunidad Valenciana (España). Alicante: Departamento de Ciencias de la Tierra y del Medio Ambiente de la Universidad de Alicante.

    Google Scholar 

  • Alfaro, P., Andreu, J. M., Baeza-Carratalá, J. F., Benavente, D., Cañaveras, J. C., Corbí, H., et al. (2012). Estrategias de divulgación de la Geología en la provincia de Alicante. Geo-Temas, 13, 1–4.

    Google Scholar 

  • Alfaro, P., Andreu, J.M., Estévez, A., López-Arcos, M., Martín-Martín, M., Martín-Rojas, I., & Tent-Manclús, J.E. (2001). Patrimonio geológico urbano de Alicante. Actas de la V Reunión Nacional de la Comisión de Patrimonio Geológico de la Sociedad Geológica de España, Molina de Segura (Murcia), 59–66.

  • Alfaro, P., Andreu, J. M., Estévez, A., Pina, J. A., & Yébenes, A., (eds.) (2004a). Itinerarios Geológicos por la provincia de Alicante para su utilización en Bachillerato. Alicante: ICE, Universidad de Alicante, 317 pp. + cd.

  • Alfaro, P., Andreu, J. M., Estévez, A., Tent-Manclús, J. E., & Yébenes, A. (2004b). Geología de Alicante (p. 267). Alicante: AEPECT—Universidad de Alicante.

    Google Scholar 

  • Anderson, B. G., & Droser, M. L. (1998). Ichnofabrics and geometric configurations of Ophiomorpha within a sequence stratigraphic framework: An example from the upper Cretaceous US western interior. Sedimentology, 45, 379–396.

    Article  Google Scholar 

  • Antonioli, A., Renato Chemello, R., Improta, S., & Riggio, S. (1999). Dendropoma lower intertidal reef formations and their palaeoclimatological significance, NW Sicily. Marine Geology, 161, 155–170.

    Article  Google Scholar 

  • Baena, J., Goy, J. L., Zazo, C., Dumas, B., Hoyos, M., Martinell, J., et al. (1981). Excursión-mesa redonda sobre el Tirreniense del litoral mediterráneo español. Madrid-Lyon: Union Internationale pour l´étude du Quaternaire.

    Google Scholar 

  • Baeza-Carratalá, J. F., Giannetti, A., Tent-Manclús, J. E., & García-Joral, F. (2014). Evaluating taphonomic bias in a storm-disturbed carbonate platform: Effects of compositional and environmental factors in lower Jurassic brachiopod accumulations (Eastern Subbetic Basin, Spain). Palaios, 29, 55–73.

    Article  Google Scholar 

  • Belaústegui, Z., Muñiz, F., Nebelsick, J. H., Domènech, R., & Martinell, J. (2017). Echinoderm ichnology: Bioturbation, bioerosion and related processes. Journal of Paleontology, 91(4), 643–661.

    Article  Google Scholar 

  • Bernardi, M., Boschele, S., Ferretti, P., & Avanzini, M. (2010). Echinoid burrow Bichordites monastiriensis from the Oligocene of NE Italy. Acta Palaeontologica Polonica, 55, 479–486.

    Article  Google Scholar 

  • Brandt, D. (1989). Taphonomic grades as a classification for fossiliferous assemblages and implications for paleoecology. Palaios, 4, 303–309.

    Article  Google Scholar 

  • Brett, C. (1995). Sequence Stratigraphy, Biostratigraphy, and Taphonomy in Shallow Marine Environments. Palaios, 10, 597–616.

    Article  Google Scholar 

  • Brett, C., & Baird, G. (1986). Comparative taphonomy: A key to paleoenvironmental interpretation based on fossil preservation. Palaios, 1, 207–227.

    Article  Google Scholar 

  • Bromley, R. G. (1996). Trace fossils. Biology, taphonomy and application. London: Chapman & Hall.

    Google Scholar 

  • Bromley, R. G., & Asgaard, U. (1975). Sediment structures produced by a spatangoid echinoid: A problem of preservation. Bulletin of the Geologicl Society of Denmark, 24, 261–281.

    Google Scholar 

  • Bromley, R. G., & Asgaard, U. (1993). Two bioerosion ichnofacies produced by early and late burial associated with sea-level change. Geologische Rundschau, 82, 276–280.

    Article  Google Scholar 

  • Bromley, R. G., Asgaard, U., & Jensen, M. (1997). Experimental study of sediment structures created by a spatangoid echinoid, Echinocardium mediterraneum. Proceedings of the Geologists’ Association, 108, 183–189.

    Article  Google Scholar 

  • Buatois, L. A., & Mángano, M. G. (2011). The ichnofacies model. In Ichnology. Organism-substrate interactions in space and time (pp. 58–82). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Buatois, L., Wisshak, M., Wilson, M., & Mángano, M. (2017). Categories of architectural designs in trace fossils: A measure of ichnodisparity. Earth-Science Reviews, 164, 102–181.

    Article  Google Scholar 

  • Caracuel, J. E., Corbí, H., Giannetti, A., Monaco, P., Soria, J. M., Tent-Manclús, J. E., et al. (2011). Paleoenvironmental changes during the Late Miocene (Messinian)–Pliocene transition: Sedimentological and ichnological evidence. Palaios, 26, 754–766.

    Article  Google Scholar 

  • Carroll, M., Kowalewski, M., Simões, M. G., & Goodfriend, G. A. (2003). Quantitative estimates of time-averaging in terebratulid brachiopod shell accumulations from a modern tropical shelf. Paleobiology, 29, 381–402.

    Article  Google Scholar 

  • Caruso, C., & Monaco, P. (2015). Bichordites monastiriensis ichnofabric from the Pleistocene shallow-marine sandstones at Le Castella (Crotone), Ionian Calabria, southern Italy. Rivista Italiana di Paleontologia e Stratigrafia, 121, 381–397.

    Google Scholar 

  • Causse, C., Goy, J. L., Zazo, C., & Hillaire-Marcel, C. (1993). Potential chronologique (Th/U) des faunes Pleistocenes méditerranéennes: Example des terrasses marines des regions de Murcie et Alicante (South-Est de l’Espagne). Geodinamica Acta, 6, 121–134.

    Article  Google Scholar 

  • Chen, J., Chen, Z. Q., & Tong, J. N. (2010). Palaeoecology and taphonomy of two brachiopod shell beds from the Anisian (Middle Triassic) of Guizhou, Southwest China: Recovery of benthic communities from the end-Permian mass extinction. Global and Planetary Change, 73, 149–160.

    Article  Google Scholar 

  • Corbí, H., & Soria, J. M. (2016). Late Miocene–early Pliocene planktonic foraminifer event-stratigraphy of the Bajo Segura basin: A complete record of the western Mediterranean. Marine and Petroleum Geology, 77, 1010–1027.

    Article  Google Scholar 

  • Corbí, H., Soria, J. M., Lancis, C., Giannetti, A., Tent-Manclús, J. E., & Dinarès-Turell, J. (2016). Sedimentological and paleoenvironmental scenario before, during, and after the Messinian Salinity Crisis: The San Miguel de Salinas composite section (western Mediterranean). Marine Geology, 379, 246–266.

    Article  Google Scholar 

  • D’Alessandro, A., & Uchman, A. (2007). Bichordites and Bichordites-Rosselia ichnoassemblages from the lower Pleistocene Tursi sandstone (Southern Italy). SEPM Special Publications, 88, 213–221.

    Google Scholar 

  • Davies, D. J., Powell, E. N., & Stanton, R. J., Jr. (1989). Taphonomic signature as a function of environmental process: shells and shell beds in a hurricane-influenced inlet on the Texas coast. Palaeogeography, Palaeoclimatology, Palaeoecology, 72, 317–356.

    Article  Google Scholar 

  • de Gibert, J., Domènech, R., & Martinell, J. (2007). Bioerosion in shell beds from the Pliocene Roussillon Basin, France: Implications for the (macro)bioerosion ichnofacies model. Acta Palaeontologica Polonica, 52(4), 783–798.

    Google Scholar 

  • de Gibert, J. M., & Goldring, R. (2007). An ichnofabric approach to the depositional interpretation of the intensely burrowed Bateig Limestone, Miocene, SE Spain. Sedimentary Geology, 194, 1–16.

    Article  Google Scholar 

  • de Gibert, J. M., & Goldring, R. (2008). Spatangoid-produced ichnofabrics (Bateig Limestone, Miocene, Spain) and the preservation of spatangoid trace fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 299–310.

    Article  Google Scholar 

  • De Larouziere, F. D., Bolze, J., Bordet, P., Hemandez, J., Montenat, C., & Ott d’Estevou, P. (1988). The Betic segment of the lithospheric Tram-Alboran shear zone during the Late Miocene. Tectonophysics, 152, 41–52.

    Article  Google Scholar 

  • Dumas, B. (1981). La Region d’Alicante. In E. Aguirre Coord (Ed.), Libret guide Table Ronde sur le Thyrrenien d’Espagne (pp. 45–75). Zürich: INQUA. Comm. Lignes de Rivages.

    Google Scholar 

  • Ekdale, A. A. (1985). Paleoecology of the marine endobenthos. Palaeogeography, Palaeoclimatology, Palaeoecology, 50, 63–81.

    Article  Google Scholar 

  • Frey, R. W., Howard, J. D., & Pryor, W. A. (1978). Ophiomorpha: Its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecolog, 23, 199–229.

    Article  Google Scholar 

  • Fürsich, F. T. (1990). Fossil concentrations and life and death assemblages. In D. E. G. Briggs & P. R. Crowther (Eds.), Palaeobiology: A Synthesis (pp. 258–263). Oxford: Blackwell Science.

    Google Scholar 

  • Genise, J. F. (2017). Ichnoentomology. Topics in geobiology (Vol. 37, p. 695). Berlin: Springer International.

    Google Scholar 

  • Giannetti, A., Baeza-Carratalá, J. F., Soria-Mingorance, J. M., Dulai, A., Tent-Manclús, J. E., & Peral-Lozano, J. (2018). New paleobiogeographical and paleoenvironmental insight through the Tortonian brachiopod and ichnofauna assemblages from the Mediterranean–Atlantic seaway (Guadix Basin, SE Spain). Facies, 64, 24. https://doi.org/10.1007/s10347-018-0536-1.

    Article  Google Scholar 

  • Giannetti, A., Falces, S., & Monaco, P. (2017). Characterization of the Ophiomorpha rudis 3D boxwork in a turbiditic succession (Oligocene of the Alicante Province, southeastern Spain). Journal of Iberian Geology, 43, 631–642.

    Article  Google Scholar 

  • Giannetti, A., & Monaco, P. (2015). Definition of sequences through ichnocoenoses and taphofacies: An example from the Sácaras Formation (early Cretaceous, eastern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 438, 70–80.

    Article  Google Scholar 

  • Giannetti, A., Monaco, P., Corbí, H., & Soria, J. (2014). Integrated taphonomy in an open-marine platform: The Lower Cretaceous of Sierra Helada (Betic Cordillera, SE Spain). Cretaceous Research, 51, 274–284.

    Article  Google Scholar 

  • Goy, J. L., Hillaire-Marcel, C., Zazo, C., Ghaleb, B., Dabrio, C. J., González, Á., et al. (2006). Further evidence for a relatively high sea level during the penultimate interglacial: Open-system U-series ages from La Marina (Alicante, East Spain). Geodinamica Acta, 19(6), 409–426.

    Article  Google Scholar 

  • Hearty, P. J. (1986). An inventory of last interglacial (sensu lato) age deposits from the Mediterranean Basin. Zeitschrift für Geomorphologie, 62, 51–69.

    Google Scholar 

  • Howard, J. D., & Frey, R. W. (1984). Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east-central Utah. Canadian Journal of Earth Sciences, 21, 200–219.

    Article  Google Scholar 

  • Kanazawa, K. (1992). Adaptation of test shape for burrowing and locomotion in spatangoid echinoids. Palaeontology, 35, 733–750.

    Google Scholar 

  • Kanazawa, K. (1995). How spatangoids produce their traces: Relationship between burrowing mechanism and trace structure. Lethaia, 28, 211–219.

    Article  Google Scholar 

  • Kidwell, S. M. (1991). Taphonomic feedback (live/dead interactions) in the genesis of bioclastic beds: Keys to reconstructing sedimentary dynamics. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and Events in Stratigraphy (pp. 268–282). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Kidwell, S. M. (1998). Time-averaging in the marine fossil record: Overview of strategies and uncertainties. Geobiology, 30, 977–995.

    Google Scholar 

  • Kidwell, S. M., & Bosence, D. W. J. (1991). Taphonomy and Time—averaging of marine shelly faunas. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: Releasing the data locked in the fossil record (pp. 115–209). New York: Plenum Press.

    Chapter  Google Scholar 

  • Kidwell, S. M., Fürsich, F. T., & Aigner, T. (1986). Conceptual framework for the analysis and classification of fossil concentrations. Palaios, 1, 228–238.

    Article  Google Scholar 

  • Kowalewski, M., Goodfriend, G. G., & Flessa, K. W. (1998). High-resolution estimates of temporal mixing within shell beds: The evils and virtues of time-averaging. Paleobiology, 24, 287–304.

    Google Scholar 

  • Książkiewicz, M. (1977). Trace fossils in the flysch of the Polish Carpathians. Paleontologica Polonica, 36, 1–208.

    Google Scholar 

  • Lancis, C., Tent-Manclús, J. E., Soria, J. M., Corbí, H., Dinarès-Turell, J., & Yébenes, A. (2010). Nannoplankton and planktonic foraminifera biostratigraphy of the eastern Betics during the Tortonian (SE Spain). Revista Española de Micropaleontología, 43, 321–344.

    Google Scholar 

  • Mángano, M. G., & Buatois, L. (2007). Trace fossils in evolutionary paleoecology. In W. Miller III (Ed.), Trace fossils, concepts, problems, perspectives (pp. 391–409). Amsterdam: Elsevier.

    Google Scholar 

  • Martínez-Martínez, J., Corbí, H., Martín-Rojas, I., Baeza-Carratalá, J. F., & Giannetti, A. (2017). Stratigraphy, petrophysical characterization and 3D geological modelling of the historical quarry of Nueva Tabarca island (western Mediterranean): Implications on heritage conservation. Engineering Geology, 231, 88–99.

    Article  Google Scholar 

  • Martinsson, A. (1970). Toponomy of trace fossils. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geological Journal Special Issue, 3, pp. 323–330.

  • Monaco, P., & Checconi, A. (2008). Stratinomic indications by trace fossils in Eocene to Miocene turbidites and hemipelagites of the Northern Apennines (Italy). In Avanzini, M. and Petti, F.M. (eds.). Italian Ichnology—Proceedings of the Ichnology session of Geoitalia 2007, VI Forum italiano di Scienze della Terra, Rimini. Studi Tridentini di Scienze Naturali, Acta Geologica 83, 133–163.

  • Monaco, P., & Giannetti, A. (2002). Three-dimensional burrow systems and taphofacies in shallowing-upward parasequences, Lower Jurassic carbonate platform (Calcari Grigi, Southern Alps, Italy). Facies, 47, 57–82.

    Article  Google Scholar 

  • Monaco, P., Giannetti, A., Caracuel, J. E., & Yébenes, A. (2005). Lower Cretaceous (Albian) shell-armoured and associated echinoid trace fossils from the Sácaras Formation, Serra Gelada area, southeast Spain. Lethaia, 38, 1–13.

    Article  Google Scholar 

  • Monaco, P., Rodríguez-Tovar, F., & Uchman, A. (2012). Ichnological evidences of environmental heterogeneity within the Bonarelli level (latest Cenomanian) in the classical localities near Gubbio, central Apennines, Italy. Palaios, 27, 48–54.

    Article  Google Scholar 

  • Montenat, C., Ott d’Estevou, P., & Coppier, G. (1990). Les bassins neógènes entre Alicante et Cartagena. Doc. et Trav. I.G.A.L., 12–13, 313–368.

    Google Scholar 

  • Nagy, J., Rodríguez Tovar, F., & Reolid, M. (2016). Environmental significance of Ophiomorpha in a transgressive–regressive sequence of the Spitsbergen Paleocene. Polar Research, 35, 24192. https://doi.org/10.3402/polar.v35.24192.

    Article  Google Scholar 

  • Nara, M. (2014). The Bichordites ichnofabric in the Pleistocene ocean current-generated sand ridge complex. Spanish Journal of Palaeontology, 29, 191–202.

    Google Scholar 

  • Nickell, L., & Atkinson, R. (1995). Functional morphology of burrows and trophic modes of three thalassinidean shrimp species, and a new approach to the classification of thalassinidean burrow morphology. Marine Ecology Progress Series, 128, 181–197.

    Article  Google Scholar 

  • Olóriz, F., Reolid, M., & Rodríguez-Tovar, F. J. (2002). Fossil assemblages, lithofacies and taphofacies for interpreting depositional dynamics in epicontinental Oxfordian (Prebetic Zone, Betic Cordillera, southern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 53–75.

    Article  Google Scholar 

  • Olóriz, F., Reolid, M., & Rodríguez-Tovar, F. J. (2008). Taphonomy of fossil macro-invertebrate assemblages as a tool for ecostratigraphic interpretation in Upper Jurassic shelf deposits (Prebetic Zone, southern Spain). Geobios, 41, 31–42.

    Article  Google Scholar 

  • Ortiz, J. E., Torres, T., Julia, R., & Llamas, J. F. (2004). Algoritmos de cálculo de edad a partir de ratios de racemización de aminoácidos de pelecípodos marinos del litoral español. Revista de la Sociedad Geológica de España, 17, 213–224.

    Google Scholar 

  • Peirano, A., Morri, C., Bianchi, C. N., Aguirre, J., Antonioli, F., Calzetta, G., et al. (2004). The Mediterranean coral Cladocora caespitosa: a proxy for past climate fluctuations? Global and Planetary Change, 40(1–2), 195–200.

    Article  Google Scholar 

  • Pemberton, S. G., Spila, M., Pulham, A. J., Saunders, T., MacEachern, J. A., Robbins, D., et al. (2001). Ichnology and sedimentology of shallow to marginal marine systems: Ben Navis & Avalon reservoirs, Jeanna d’Arc Basin. Geological Association of Canada, 15, 343. (Short Course Notes).

    Google Scholar 

  • Pina, J. A., & Cano, M. (2004). Geología urbana de Alicante. In P. Alfaro, J. M. Andreu, J. E. Estévez, J. E. Tent-Manclús, & A. Yébenes (Eds.), Geología de Alicante (pp. 179–199). Alicante: Universidad de Alicante.

    Google Scholar 

  • Rajchel, J., & Uchman, A. (2012). Ichnology of upper cretaceous deep-sea thick-bedded flysch sandstones: Lower Istebna Beds, Silesian Unit (Outer Carpathians, southern Poland). Geologica Carpathica, 63, 107–120.

    Article  Google Scholar 

  • Reolid, M., García-García, F., Reolid, J., de Castro, A., Bueno, J. F., & Martín-Suárez, E. (2016). Palaeoenvironmental interpretation of a sand-dominated coastal system of the Upper Miocene of eastern Guadalquivir Basin (south Spain): Fossil assemblages, ichnology and taphonomy. Journal of Iberian Geology, 42, 275–290.

    Article  Google Scholar 

  • Savrda, C. E. (2007). Taphonomy of Trace Fossils. In W. Miller III (Ed.), Trace Fossils, Concepts, Problems, Perspectives (pp. 92–109). Amsterdam: Elsevier.

    Google Scholar 

  • Seilacher, A. (1978). Use of trace fossil assemblages for recognizing depositional environments. Society of Economic Paleontologists and Mineralogists (SEPM)., 5, 167–181. (short course).

    Google Scholar 

  • Seilacher, A. (2007). Trace Fossil Analysis (p. 226). Berlin: Springer.

    Google Scholar 

  • Sillero, C., Vives, F., Marín, J. M., & Ródenas, A. (1993). Un pequeño testimonio Tirreniense en el Cabo de la Huerta. Cidaris, 2, 25–29.

    Google Scholar 

  • Soria, J. M., Caracuel, J. E., Corbí, H., Dinarès-Turell, J., Lancis, C., Tent-Manclús, J. E., et al. (2008). The Messinian-early Pliocene record in the southern Bajo Segura Basin (Betic Cordillera, Spain): Implications for the Mediterranean salinity crisis. Sedimentary Geology, 203, 267–288.

    Article  Google Scholar 

  • Soria, J. M., Caracuel, J. E., Yébenes, A., Fernández, J., & Viseras, C. (2005). The stratigraphic record of the Messinian salinitycrisis in the northern margin of the Bajo Segura Basin (SE Spain). Sedimentary Geology, 179, 225–247.

    Article  Google Scholar 

  • Soria, J. M., Giannetti, A., Monaco, P., Corbí, H., García-Ramos, D., & Viseras, C. (2014). Cyclically-arranged, storm-controlled, prograding lithosomes in Messinian terrigenous shelves (Bajo Segura Basin, western Mediterranean). Sedimentary Geology, 310, 1–15.

    Article  Google Scholar 

  • Speyer, S. E., & Brett, C. (1986). Trilobite taphonomy and Middle Devonian taphofacies. Palaios, 1, 312–327.

    Article  Google Scholar 

  • Tent-Manclús, J. E. (2003). Estructura y estratigrafía de las sierras de Crevillente, Abanilla y Algayat: Su relación con la Falla de Crevillente. PhD thesis (p. 970). Alicante: Universidad de Alicante.

    Google Scholar 

  • Tomašových, A. (2006). Linking taphonomy to community-level abundance: Insights into compositional fidelity of the Upper Triassic shell concentrations (Eastern Alps). Palaeogeography, Palaeoclimatology, Palaeoecology, 235, 355–381.

    Article  Google Scholar 

  • Torres, T., Llamas, F. J., Canoira, L., García-Alonso, P., & Ortiz, J. E. (1999). Estratigrafía biomolecular. La racemización/epimerización de aminoácidos como herramienta geocronológica y paleotermométrica. Publicación Técnica de ENRESA, n.o 09/99. Ed. ENRESA. 156 pp.

  • Uchman, A. (1995). Taxonomy and palaeoecology of flysch trace fossils: The Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria, 15, 3–115.

    Google Scholar 

  • Uchman, A. (1998). Taxonomy and ethology of flysch trace fossils: Revision of the Marian Książkiewicz collection and studies of complementary material. Annales Societatis Geologorum Poloniae, 68, 105–218.

    Google Scholar 

  • Uchman, A. (2009). The Ophiomorpha rudis ichnosubfacies of the Nereites ichnofacies: Characteristics and constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 276, 107–119.

    Article  Google Scholar 

  • Wanless, H. R., Tedesco, L. P., & Tyrrell, K. M. (1988). Production of subtidal tubular and surficial tempestites by Hurricane Kate, Caicos Platform, British West Indies. Journal of Sedimentary Research, 58, 739–750.

    Google Scholar 

  • Wetzel, A., & Aigner, T. (1986). Stratigraphic completeness: Tiered trace fossils provide a measuring stick. Geology, 14, 234–237.

    Article  Google Scholar 

  • Zuschin, M., Robert, J., & Stanton, J. R. (2002). Paleocommunity reconstruction from shell beds: A case study from the main glauconite bed, Eocene, Texas. Palaios, 17, 602–614.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the project CGL2015-66835-P, financed by the Spanish Ministry of Education and Science (MINECO, Government of Spain). We also gratefully acknowledge two anonymous reviewers and the associated editor C. Braga for their valuable comments and constructive reviews. We thank Christine Laurin for editing the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Giannetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannetti, A., Monaco, P., Falces-Delgado, S. et al. Taphonomy, ichnology, and palaeoecology to distinguish event beds in varied shallow-water settings (Betic Cordillera, SE Spain). J Iber Geol 45, 47–61 (2019). https://doi.org/10.1007/s41513-018-0094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-018-0094-y

Keywords

Palabras clave

Navigation