Log in

Divergent Research Methods Limit Understanding of Working Memory Training

  • Review
  • Published:
Journal of Cognitive Enhancement Aims and scope Submit manuscript

Abstract

Working memory training has been a hot topic over the last decade. Although studies show benefits in trained and untrained tasks as a function of training, there is an ongoing debate on the efficacy of working memory training. There have been numerous meta-analyses put forth to the field, some finding overall broad transfer effects while others do not. However, discussion of this research typically overlooks specific qualities of the training and transfer tasks. As such, there has been next to no discussion in the literature on what training and transfer tasks features are likely to mediate training outcomes. To address this gap, here, we characterized the broad diversity of features employed in N-back training tasks and outcome measures in published working memory training studies. Extant meta-analyses have not taken into account the diversity of methodology at this level, primarily because there are too few studies using common methods to allow for a robust meta-analysis. We suggest that these limitations preclude strong conclusions from published data. In order to advance research on working memory training, and in particular, N-back training, more studies are needed that systematically compare training features and use common outcome measures to assess transfer effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that only studies that assessed transfer are reported here.

References

  • Abe, M., Schambra, H., Wassermann, E. M., Luckenbaugh, D., Schweighofer, N., & Cohen, L. G. (2011). Reward improves long-term retention of a motor memory through induction of offline memory gains. Current Biology, 21(7), 557–562.

    Article  PubMed  Google Scholar 

  • Ackerman, P. L., & Kanfer, R. (2009). Test length and cognitive fatigue: an empirical examination of effects on performance and test-taker reactions. Journal of Experimental Psychology: Applied, 15(2), 163.

    PubMed  Google Scholar 

  • Ahissar, M., & Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning. Nature, 387(6631), 401.

    Article  PubMed  Google Scholar 

  • Anguera, J. A., Bernard, J. A., Jaeggi, S. M., Buschkuehl, M., Benson, B. L., Jennett, S., ... & Seidler, R. D. (2012). The effects of working memory resource depletion and training on sensorimotor adaptation. Behavioural Brain Research, 228(1), 107–115.

  • Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: a meta-analysis. Psychonomic bulletin & review, 22(2), 366–377.

    Article  Google Scholar 

  • Baddeley, A. (2003). Working memory: looking back and looking forward. Nature reviews neuroscience, 4(10), 829.

    Article  PubMed  Google Scholar 

  • Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual review of psychology, 63, 1–29.

    Article  PubMed  Google Scholar 

  • Beauducel, A., Brocke, B., & Liepmann, D. (2001). Perspectives on fluid and crystallized intelligence: facets for verbal, numerical, and figural intelligence. Personality and individual Differences, 30(6), 977–994.

    Article  Google Scholar 

  • Beavon, P. (2012). Improving memory using N-back training. Retrieved from https://ro.ecu.edu.au/theses_hons/65. Accessed 29 Apr 2019.

  • Blacker, K. J., Negoita, S., Ewen, J. B., & Courtney, S. M. (2017). N-back versus complex span working memory training. Journal of Cognitive Enhancement, 1(4), 434–454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Borella, E., Carretti, B., Riboldi, F., & De Beni, R. (2010). Working memory training in older adults: evidence of transfer and maintenance effects. Psychology and aging, 25(4), 767.

    Article  PubMed  Google Scholar 

  • Burgers, C., Eden, A., van Engelenburg, M. D., & Buningh, S. (2015). How feedback boosts motivation and play in a brain-training game. Computers in Human Behavior, 48, 94–103.

    Article  Google Scholar 

  • Bürki, C. N., Ludwig, C., Chicherio, C., & De Ribaupierre, A. (2014). Individual differences in cognitive plasticity: An investigation of training curves in younger and older adults. Psychological Research, 78(6), 821–835.

    Article  PubMed  Google Scholar 

  • Buschkuehl, M., Hernandez-Garcia, L., Jaeggi, S. M., Bernard, J. A., & Jonides, J. (2014). Neural effects of short-term training on working memory. Cognitive, Affective, & Behavioral Neuroscience, 14(1), 147–160.

    Article  Google Scholar 

  • Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17(2), 193–199.

    Article  Google Scholar 

  • Chooi, W.-T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40(6), 531–542.

    Article  Google Scholar 

  • Clark, C. M., Lawlor-Savage, L., & Goghari, V. M. (2017a). Functional brain activation associated with working memory training and transfer. Behavioural Brain Research, 334, 34–49.

    Article  PubMed  Google Scholar 

  • Clark, C. M., Lawlor-Savage, L., & Goghari, V. M. (2017b). Working memory training in healthy young adults: support for the null from a randomized comparison to active and passive control groups. PLoS ONE, 12(5), e0177707.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clouter, A. (2013). The effects of dual n-back training on the components of working memory and fluid intelligence: an individual differences approach. Retrieved from https://dalspace.library.dal.ca/handle/10222/36238. Accessed 29 Apr 2019.

  • Colom, R., Román, F. J., Abad, F. J., Shih, P. C., Privado, J., Froufe, M., ... & Karama, S. (2013). Adaptive n-back training does not improve fluid intelligence at the construct level: gains on individual tests suggest that training may enhance visuospatial processing. Intelligence, 41(5), 712–727.

  • Crottaz-Herbette, S., Anagnoson, R. T., & Menon, V. (2004). Modality effects in verbal working memory: differential prefrontal and parietal responses to auditory and visual stimuli. Neuroimage, 21(1), 340–351.

    Article  PubMed  Google Scholar 

  • Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 1510–1512.

    Article  PubMed  Google Scholar 

  • Green, C. S., Bavelier, D., Kramer, A. F., Vinogradov, S., Ansorge, U., Ball, K. K., ... Witt, C. M. (2019). Improving methodological standards in behavioral interventions for cognitive enhancement. Journal of Cognitive Enhancement, 1–28.

  • Heinzel, S., Schulte, S., Onken, J., Duong, Q. L., Riemer, T. G., Heinz, A., & Rapp, M. A. (2014). Working memory training improvements and gains in non-trained cognitive tasks in young and older adults. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 21(2), 146–173.

    Article  PubMed  Google Scholar 

  • Heinzel, S., Lorenz, R. C., Pelz, P., Heinz, A.,Walter, H., Kathmann, N., … & Stelzel, C. (2016). Neural correlates of training and transfer effects in working memory in older adults. Neuroimage, 134, 236–249.

  • Heinzel, S., Rimpel, J., Stelzel, C., & Rapp, M. A. (2017). Transfer effects to a multimodal dual-task after working memory training and associated neural correlates in older adults—a pilot study. Frontiers in Human Neuroscience, 11, 85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hempel, A., Giesel, F. L., Garcia Caraballo, N. M., Amann, M., Meyer, H., Wüstenberg, T., et al. (2004). Plasticity of cortical activation related to working memory during training. American Journal of Psychiatry, 161(4), 745–747.

    Article  PubMed  Google Scholar 

  • Hogrefe, A. B., Studer-Luethi, B., Kodzhabashev, S., & Perrig, W. J. (2017). Mechanisms underlying n-back training: response consistency during training influences training outcome. Journal of Cognitive Enhancement, 1(4), 406–418.

    Article  Google Scholar 

  • Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, 12(4), F9–F15.

    Article  PubMed  Google Scholar 

  • Hung, S. C., & Seitz, A. R. (2014). Prolonged training at threshold promotes robust retinotopic specificity in perceptual learning. Journal of Neuroscience, 34(25), 8423–8431.

    Article  PubMed  Google Scholar 

  • Hussey, E. K., Harbison, J., Teubner-Rhodes, S. E., Mishler, A., Velnoskey, K., & Novick, J. M. (2017). Memory and language improvements following cognitive control training. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(1), 23.

    PubMed  Google Scholar 

  • Jackson, J. J., Hill, P. L., Payne, B. R., Roberts, B. W., & Stine-Morrow, E. A. (2012). Can an old dog learn (and want to experience) new tricks? Cognitive training increases openness to experience in older adults. Psychology and Aging, 27(2), 286–292.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaeggi, S. M., Seewer, R., Nirkko, A. C., Eckstein, D., Schroth, G., Groner, R., & Gutbrod, K. (2003). Does excessive memory load attenuate activation in the prefrontal cortex? Load-dependent processing in single and dual tasks: functional magnetic resonance imaging study. NeuroImage, 19(2), 210–225.

    Article  PubMed  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833.

    Article  Google Scholar 

  • Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y. F., Jonides, J., & Perrig, W. J. (2010a). The relationship between n-back performance and matrix reasoning—implications for training and transfer. Intelligence, 38(6), 625–635.

    Article  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2010b). The concurrent validity of the N-back task as a working memory measure. Memory, 18(4), 394–412.

    Article  PubMed  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Shah, P., & Jonides, J. (2014). The role of individual differences in cognitive training and transfer. Memory and Cognition, 42(3), 464–480.

    Article  PubMed  Google Scholar 

  • Jonasson, C. (2014). Defining boundaries between school and work: teachers and students’ attribution of quality to school-based vocational training. Journal of Education and Work, 27(5), 544–563.

    Article  Google Scholar 

  • Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133(2), 189.

    Article  Google Scholar 

  • Katz, B., Jaeggi, S. M., Buschkuehl, M., Shah, P., & Jonides, J. (2018). The effect of monetary compensation on cognitive training outcomes. Learning and Motivation, 63, 77–90.

    Article  Google Scholar 

  • Klingberg, T. (2012). Is working memory capacity fixed? Journal of Applied Research in Memory and Cognition, 1(3), 194–196.

    Article  Google Scholar 

  • Kühn, S., Schmiedek, F., Noack, H., Wenger, E., Bodammer, N. C., Lindenberger, U., & Lövden, M. (2013). The dynamics of change in striatal activity following updating training. Human Brain Map**, 34(7), 1530–1541.

    Article  PubMed  Google Scholar 

  • Kundu, B., Sutterer, D. W., Emrich, S. M., & Postle, B. R. (2013). Strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention. Journal of Neuroscience, 33(20), 8705–8715.

    Article  PubMed  Google Scholar 

  • Küper, K., & Karbach, J. (2016). Increased training complexity reduces the effectiveness of brief working memory training: evidence from short-term single and dual n-back training interventions. Journal of Cognitive Psychology, 28(2), 199–208.

    Article  Google Scholar 

  • Kyllonen, P., Hartman, R., Sprenger, A., Weeks, J., Bertling, M., McGrew, K., et al. (2018). General fluid/inductive reasoning battery for a high-ability population. Behavior Research Methods, 1–16.

  • Laine, M., Fellman, D., Waris, O., & Nyman, T. J. (2018). The early effects of external and internal strategies on working memory updating training. Scientific Reports, 8(1), 4045.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawlor-Savage, L., & Goghari, V. M. (2016). Dual n-back working memory training in healthy adults: a randomized comparison to processing speed training. PloS ONE, 11(4), e0151817.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, S. C., Schmiedek, F., Huxhold, O., Röcke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychology and Aging, 23(4), 731.

    Article  PubMed  Google Scholar 

  • Lilienthal, L., Tamez, E., Shelton, J. T., Myerson, J., & Hale, S. (2013). Dual N-back training increases the capacity of the focus of attention. Psychonomic Bulletin & Review, 20(1), 135–141.

    Article  Google Scholar 

  • Loosli, S. V., Falquez, R., Unterrainer, J. M., Weiller, C., Rahm, B., & Kaller, C. P. (2016). Training of resistance to proactive interference and working memory in older adults: a randomized double-blind study. International Psychogeriatrics, 28(3), 453–467.

    Article  PubMed  Google Scholar 

  • Lövdén, M., Schaefer, S., Noack, H., Kanowski, M., Kaufmann, J., Tempelmann, C., et al. (2010). Performance-related increases in hippocampal N-acetylaspartate (NAA) induced by spatial navigation training are restricted to BDNF Val homozygotes. Cerebral Cortex, 21(6), 1435–1442.

    Article  PubMed  Google Scholar 

  • Maraver, M. J., Bajo, M. T., & Gomez-Ariza, C. J. (2016). Training on working memory and inhibitory control in young adults. Frontiers in Human Neuroscience, 10, 588.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marček, V. (2015). Effectiveness of n-back cognitive training: quantitative and qualitative aspects (Doctoral dissertation, Masarykova univerzita, Fakulta sociálních studií).

  • Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270.

    Article  PubMed  Google Scholar 

  • Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer” evidence from a meta-analytic review. Perspectives on Psychological Science, 11(4), 512–534.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minear, M., Brasher, F., Guerrero, C. B., Brasher, M., Moore, A., & Sukeena, J. (2016). A simultaneous examination of two forms of working memory training: Evidence for near transfer only. Memory & Cognition, 44(7), 1014–1037.

    Article  Google Scholar 

  • Mohammed, S., Flores, L., Deveau, J., Hoffing, R. C., Phung, C., Parlett, C. M., et al. (2017). The benefits and challenges of implementing motivational features to boost cognitive training outcome. Journal of Cognitive Enhancement, 1(4), 491–507.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin & Review, 18(1), 46–60.

    Article  Google Scholar 

  • Nagle, A., Riener, R., & Wolf, P. (2015). High user control in game design elements increases compliance and in-game performance in a memory training game. Frontiers in Psychology, 6, 1774.

    Article  PubMed  PubMed Central  Google Scholar 

  • Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Map**, 25(1), 46–59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pahor, A., Stavropoulos, T., Jaeggi, S. M., & Seitz, A. R. (2018). Validation of a matrix reasoning task for mobile devices. Behavior Research Methods, 1–12.

  • Preece, D. (2012). The effect of working memory (n-back) training on fluid intelligence. Retrieved from https://ro.ecu.edu.au/theses_hons/54. Accessed 29 Apr 2019.

  • Qiu, F., Wei, Q., Zhao, L., Lin, L. (2009). Study on Improving Fluid Intelligence through Cognitive Training System Based on Gabor Stimulus. The 1st International Conference on Information Science and Engineering (ICISE2009).

  • Redick, T. S., & Lindsey, D. R. (2013). Complex span and n-back measures of working memory: a meta-analysis. Psychonomic Bulletin & Review, 20(6), 1102–1113.

    Article  Google Scholar 

  • Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., & Engle, R. W. (2013). No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. Journal of Experimental Psychology. General, 142(2), 359–379.

    Article  PubMed  Google Scholar 

  • Rudebeck, S. R., Bor, D., Ormond, A., O’Reilly, J. X., & Lee, A. C. H. (2012). A potential spatial working memory training task to improve both episodic memory and fluid intelligence. PLoS ONE, 7(11), e50431.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salminen, T., Strobach, T., & Schubert, T. (2012). On the impacts of working memory training on executive functioning. Frontiers in Human Neuroscience, 6, 166.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salminen, T., Frensch, P., Strobach, T., & Schubert, T. (2015). Age-specific differences of dual n-back training. Aging, Neuropsychology, and Cognition, 23(1), 18–39.

    Article  Google Scholar 

  • Salthouse, T. A., & Tucker-Drob, E. M. (2008). Implications of short-term retest effects for the interpretation of longitudinal change. Neuropsychology, 22(6), 800.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwaighofer, M., Fischer, F., & Bühner, M. (2015). Does working memory training transfer? A meta-analysis including training conditions as moderators. Educational Psychologist, 50(2), 138–166.

    Article  Google Scholar 

  • Schwarb, H., Nail, J., & Schumacher, E. H. (2015). Working memory training improves visual short-term memory capacity. Psychological Research, 80(1), 128–148.

    Article  PubMed  Google Scholar 

  • Schweizer, S., Hampshire, A., & Dalgleish, T. (2011). Extending brain-training to the affective domain: increasing cognitive and affective executive control through emotional working memory training. PloS ONE, 6(9), e24372.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seitz, A. R., Nanez, J. E., Holloway, S., Tsushima, Y., & Watanabe, T. (2006). Two cases requiring external reinforcement in perceptual learning. Journal of Vision, 6(9), 9–9.

    Article  Google Scholar 

  • Shah, P., & Miyake, A. (1999). Models of working memory: An introduction. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanism of active maintenance and executive control (pp. 1–26). New York: Cambridge University Press.

    Google Scholar 

  • Shahar, N., & Meiran, N. (2015). Learning to control actions: transfer effects following a procedural cognitive control computerized training. PloS ONE, 10(3), e0119992.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simen, P., Contreras, D., Buck, C., Hu, P., Holmes, P., & Cohen, J. D. (2009). Reward rate optimization in two-alternative decision making: empirical tests of theoretical predictions. Journal of Experimental Psychology: Human Perception and Performance, 35(6), 1865.

    PubMed  Google Scholar 

  • Smith, S. P., Stibric, M., & Smithson, D. (2013). Exploring the effectiveness of commercial and custom-built games for cognitive training. Computers in Human Behavior, 29(6), 2388–2393.

    Article  Google Scholar 

  • Soveri, A., Karlsson, E., Waris, O., Grönholm-Nyman, P., & Laine, M. (2017a). Pattern of near transfer effects following working memory training with a dual n-back task. Experimental Psychology, 64(4), 240.

    Article  PubMed  Google Scholar 

  • Soveri, A., Antfolk, J., Karlsson, L., Salo, B., & Laine, M. (2017b). Working memory training revisited: A multi-level meta-analysis of n-back training studies. Psychonomic Bulletin & Review, 24(4), 1077–1096.

    Article  Google Scholar 

  • Stepankova, H., Lukavsky, J., Buschkuehl, M., Kopecek, M., Ripova, D., & Jaeggi, S. M. (2013). The malleability of working memory and visuospatial skills: a randomized controlled study in older adults. Developmental Psychology, 50(4), 1049–1059.

    Article  PubMed  Google Scholar 

  • Stephenson, C. L., & Halpern, D. F. (2013). Improved matrix reasoning is limited to training on tasks with a visuospatial component. Intelligence, 41(5), 341–357.

    Article  Google Scholar 

  • Strüber, D., & Polich, J. (2002). P300 and slow wave from oddball and single-stimulus visual tasks: inter-stimulus interval effects. International Journal of Psychophysiology, 45(3), 187–196.

    Article  PubMed  Google Scholar 

  • Thompson, T. W., Waskom, M. L., Garel, K. L., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., & Gabrieli, J. D. (2013). Failure of working memory training to enhance cognition or intelligence. PLoS ONE, 8(5), e63614.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai, N., Buschkuehl, M., Kamarsu, S., Shah, P., Jonides, J., & Jaeggi, S. M. (2018). (Un) Great expectations: the role of placebo effects in cognitive training. Journal of Applied Research in Memory and Cognition, 7(4), 564–573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Urbánek, T., & Marček, V. (2015). Investigating the effectiveness of working memory training in the context of Personality Systems Interaction theory. Psychological Research, 80(5), 877–888.

    Article  PubMed  Google Scholar 

  • Vartanian, O., Jobidon, M.-E., Bouak, F., Nakashima, A., Smith, I., Lam, Q., & Cheung, B. (2013). Working memory training is associated with lower prefrontal cortex activation in a divergent thinking task. Neuroscience, 236, 186–194.

    Article  PubMed  Google Scholar 

  • von Bastian, C. C., & Eschen, A. (2016). Does working memory training have to be adaptive? Psychological Research, 80(2), 181–194.

    Article  Google Scholar 

  • von Bastian, C. C., & Oberauer, K. (2014). Effects and mechanisms of working memory training: a review. Psychological Research, 78(6), 803–820.

    Article  Google Scholar 

  • Waris, O., Soveri, A., & Laine, M. (2015). Transfer after working memory updating training. PloS ONE, 10(9), e0138734.

    Article  PubMed  PubMed Central  Google Scholar 

  • West, R. L., Welch, D. C., & Thorn, R. M. (2001). Effects of goal-setting and feedback on memory performance and beliefs among older and younger adults. Psychology and Aging, 16(2), 240.

  • Zajac-Lamparska, L., & Trempala, J. (2016). Effects of working memory and attentional control training and their transfer onto fluid intelligence in early and late adulthood. Health Psychology Report, 4(1), 41–53.

    Article  Google Scholar 

  • Zhao, X., Xu, Y., Fu, J., & Maes, J. H. (2018). Are training and transfer effects of working memory updating training modulated by achievement motivation? Memory & Cognition, 46(3), 398–409.

    Article  Google Scholar 

Download references

Funding

This research was supported by NIMH R01 MH111742 to ARS and SMJ, NIH/NIA 1K02AG054665 to SMJ, and a research grant to VP from the Belgian Fund for Scientific Research-Flanders (G088314N), by research grants to MMVH from the Financing program (PFV/10/008), an interdisciplinary research project (IDO/12/007), an industrial research fund project (IOF/HB/12/021) and a special research fund project (C24/18/098) of the KU Leuven, the Belgian Fund for Scientific Research-Flanders (G088314N, G0A0914N, G0A4118N), the Interuniversity Attraction Poles Programme—Belgian Science Policy (IUAP P7/11), the Flemish Regional Ministry of Education (Belgium) (GOA 10/019), and the Hercules Foundation (AKUL 043).

SMJ has an indirect conflict of interest with the MIND Research Institute whose interests are related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Pergher.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pergher, V., Shalchy, M.A., Pahor, A. et al. Divergent Research Methods Limit Understanding of Working Memory Training. J Cogn Enhanc 4, 100–120 (2020). https://doi.org/10.1007/s41465-019-00134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41465-019-00134-7

Keywords

Navigation