Log in

Probing nucleon effective mass splitting with light particle emission

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The main objective of this study was to investigate the impact of effective mass splitting on heavy-ion-collision observables. We first analyzed correlations between different nuclear matter parameters obtained from 119 effective Skyrme interaction sets. The values of the correlation coefficients illustrate that the magnitude of effective mass splitting is crucial for tight constraints on the symmetry energy via heavy-ion collisions. The \(^{86}\)Kr + \(^{208}\)Pb system at beam energies ranging from 25 to 200A MeV was simulated within the framework of the improved quantum molecular dynamics model (ImQMD-Sky). Our calculations show that the slopes of the spectra of \(\ln\)[Y(n)/Y(p)] and \(\ln\)[Y(t)/Y(\(^3\)He)], which are the logarithms of the neutron to proton and triton to helium-3 yield ratios, are directly related to effective mass splitting and can be used to probe the effective mass splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.A. Li, B.J. Cai, L.W. Chen et al., Nucleon effective masses in neutron-rich matter. Prog. Part. Nucl. Phys. 99, 29–119 (2018). https://doi.org/10.1016/j.ppnp.2018.01.001

    Article  ADS  Google Scholar 

  2. J. Jeukenne, A. Lejeune, C. Mahaux, Many-body theory of nuclear matter. Phys. Rep. 25, 83–174 (1976). https://doi.org/10.1016/0370-1573(76)90017-X

    Article  ADS  Google Scholar 

  3. X.L. Shang, A. Li, Z.Q. Miao et al., Nucleon effective mass in hot dense matter. Phys. Rev. C 101, 065801 (2020). https://doi.org/10.1103/PhysRevC.101.065801

    Article  ADS  Google Scholar 

  4. A. Li, J.N. Hu, X.L. Shang et al., Nonrelativistic nucleon effective masses in nuclear matter: Brueckner–hartree–fock model versus relativistic hartree–fock model. Phys. Rev. C 93, 015803 (2016). https://doi.org/10.1103/PhysRevC.93.015803

    Article  ADS  Google Scholar 

  5. P.S. Shternin, Transport coefficients of leptons in superconducting neutron star cores. Phys. Rev. D 98, 063015 (2018). https://doi.org/10.1103/PhysRevD.98.063015

    Article  ADS  Google Scholar 

  6. A.Y. Potekhin, A.I. Chugunov, G. Chabrier, Thermal evolution and quiescent emission of transiently accreting neutron stars. Astron. Astrophys. 629, 16 (2019). https://doi.org/10.1051/0004-6361/201936003

    Article  Google Scholar 

  7. M. Baldo, G.F. Burgio, Properties of the nuclear medium. Rep. Progr. Phys. 75, 026301 (2012). https://doi.org/10.1088/0034-4885/75/2/026301

    Article  ADS  Google Scholar 

  8. D. Page, J.M. Lattimer, M. Prakash et al., Minimal cooling of neutron stars: a new paradigm. Astrophys. J. Suppl. Ser. 155, 623 (2004). https://doi.org/10.1086/424844

    Article  ADS  Google Scholar 

  9. A. Dehghan Niri, H.R. Moshfegh, P. Haensel, Nuclear correlations and neutrino emissivity from the neutron branch of the modified urca process. Phys. Rev. C 93, 045806 (2016). https://doi.org/10.1103/PhysRevC.93.045806

    Article  ADS  Google Scholar 

  10. A. Dehghan Niri, H.R. Moshfegh, P. Haensel, Role of nuclear correlations and kinematic effects on neutrino emission from the modified urca processes. Phys. Rev. C 98, 025803 (2018). https://doi.org/10.1103/PhysRevC.98.025803

    Article  ADS  Google Scholar 

  11. P.S. Shternin, M. Baldo, P. Haensel, In-medium enhancement of the modified urca neutrino reaction rates. Phys. Lett. B 786, 28–34 (2018). https://doi.org/10.1016/j.physletb.2018.09.035

    Article  ADS  Google Scholar 

  12. J.B. Wei, G.F. Burgio, H.J. Schulze, Neutron star cooling with microscopic equations of state. Month. Not. R. Astron. Soc. 484, 5162–5169 (2019). https://doi.org/10.1093/mnras/stz336

    Article  ADS  Google Scholar 

  13. Y. Zhang, M. Tsang, Z. Li et al., Constraints on nucleon effective mass splitting with heavy ion collisions. Phys. Lett. B 732, 186–190 (2014). https://doi.org/10.1016/j.physletb.2014.03.030

    Article  ADS  MathSciNet  Google Scholar 

  14. D.D.S. Coupland, M. Youngs, Z. Chajecki et al., Probing effective nucleon masses with heavy-ion collisions. Phys. Rev. C 94, 011601 (2016). https://doi.org/10.1103/PhysRevC.94.011601

    Article  ADS  Google Scholar 

  15. Z.Q. Feng, Effective mass splitting of neutron and proton and isospin emission in heavy-ion collisions. Nucl. Phys. A 878, 3–13 (2012). https://doi.org/10.1016/j.nuclphysa.2012.01.014

    Article  ADS  Google Scholar 

  16. W.J. **e, J. Su, L. Zhu et al., Neutron-proton effective mass splitting in a Boltzmann–Langevin approach. Phys. Rev. C 88, 061601 (2013). https://doi.org/10.1103/PhysRevC.88.061601

    Article  ADS  Google Scholar 

  17. J. Su, L. Zhu, C.Y. Huang et al., Effects of symmetry energy and effective k-mass splitting on central 96Ru(96Zr) + 96Zr(96Ru) collisions at 50 to 400 mev/nucleon. Phys. Rev. C 96, 024601 (2017). https://doi.org/10.1103/PhysRevC.96.024601

    Article  ADS  Google Scholar 

  18. G.F. Wei, Q.J. Zhi, X.W. Cao et al., Examination of an isospin-dependent single-nucleon momentum distribution for isospin-asymmetric nuclear matter in heavy-ion collisions. Nucl. Scie. Tech. 31, 71 (2020). https://doi.org/10.1007/s41365-020-00779-6

    Article  Google Scholar 

  19. B.A. Li, Constraining the neutron-proton effective mass splitting in neutron-rich matter. Phys. Rev. C 69, 064602 (2004). https://doi.org/10.1103/PhysRevC.69.064602

    Article  ADS  Google Scholar 

  20. X.H. Li, W.J. Guo, B.A. Li et al., Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model. Phys. Lett. B 743, 408–414 (2015). https://doi.org/10.1016/j.physletb.2015.03.005

    Article  ADS  Google Scholar 

  21. C. Xu, B.A. Li, L.W. Chen, Symmetry energy, its density slope, and neutron-proton effective mass splitting at normal density extracted from global nucleon optical potentials. Phys. Rev. C 82, 054607 (2010). https://doi.org/10.1103/PhysRevC.82.054607

    Article  ADS  Google Scholar 

  22. Z. Zhang, L.W. Chen, Isospin splitting of the nucleon effective mass from giant resonances in \(^{208}\rm Pb\). Phys. Rev. C 93, 034335 (2016). https://doi.org/10.1103/PhysRevC.93.034335

    Article  ADS  Google Scholar 

  23. H.Y. Kong, J. Xu, L.W. Chen et al., Constraining simultaneously nuclear symmetry energy and neutron-proton effective mass splitting with nucleus giant resonances using a dynamical approach. Phys. Rev. C 95, 034324 (2017). https://doi.org/10.1103/PhysRevC.95.034324

    Article  ADS  Google Scholar 

  24. J. Su, L. Zhu, C. Guo, Constraints on the effective mass splitting by the isoscalar giant quadrupole resonance. Phys. Rev. C 101, 044606 (2020). https://doi.org/10.1103/PhysRevC.101.044606

    Article  ADS  Google Scholar 

  25. J. Xu, W.T. Qin, Nucleus giant resonances from an improved isospin-dependent Boltzmann–Uehling–Uhlenbeck transport approach. Phys. Rev. C 102, 024306 (2020). https://doi.org/10.1103/PhysRevC.102.024306

    Article  ADS  Google Scholar 

  26. P. Morfouace, C. Tsang, Y. Zhang et al., Constraining the symmetry energy with heavy-ion collisions and Bayesian analyses. Phys. Lett. B 799, 135045 (2019). https://doi.org/10.1016/j.physletb.2019.135045

    Article  Google Scholar 

  27. X.H. Zhou, Physics opportunities at the new facility hiaf. Nucl. Phys. Rev. 35, 339 (2018). https://doi.org/10.11804/NuclPhysRev.35.04.339

    Article  Google Scholar 

  28. P.N. Ostroumov, S. Cogan, K. Fukushima et al., Heavy ion beam acceleration in the first three cryomodules at the facility for rare isotope beams at Michigan state university. Phys. Rev. Accel. Beams 22, 040101 (2019). https://doi.org/10.1103/PhysRevAccelBeams.22.040101

    Article  ADS  Google Scholar 

  29. H. Sakurai, Ri beam factory project at Riken. Nucl. Phys. A 805, 526c–532c (2008). https://doi.org/10.1016/j.nuclphysa.2008.02.291

    Article  ADS  Google Scholar 

  30. B. Hong, Y. Go, G. Jhang et al., Plan for nuclear symmetry energy experiments using the lamps system at the rib facility Raon in Korea. Eur. Phys. J. A 50, 11 (2014). https://doi.org/10.1140/epja/i2014-14049-2

    Article  ADS  Google Scholar 

  31. W.P. Liu, The prospects for accelerator-based nuclear physics facilities. Physics 43, 150 (2014). https://doi.org/10.7693/wl20140301

    Article  Google Scholar 

  32. Y. Zhang, M. Tsang, Z. Li et al., Constraints on nucleon effective mass splitting with heavy ion collisions. Phys. Lett. B 732, 186–190 (2014). https://doi.org/10.1016/j.physletb.2014.03.030

    Article  Google Scholar 

  33. M. Mocko, M.B. Tsang, Z.Y. Sun et al., Projectile fragmentation of \(^{86}\rm Kr\) at 64 mev/nucleon. Phys. Rev. C 76, 014609 (2007). https://doi.org/10.1103/PhysRevC.76.014609

    Article  ADS  Google Scholar 

  34. M.B. Tsang, Y. Zhang, P. Danielewicz et al., Constraints on the density dependence of the symmetry energy. Phys. Rev. Lett. 102, 122701 (2009). https://doi.org/10.1103/PhysRevLett.102.122701

    Article  ADS  Google Scholar 

  35. J. Estee, Charged pion emission from neutron-rich heavy ion collisions for studies on the symmetry energy. Ph.D. thesis 188 (2020).https://doi.org/10.25335/s6mp-5668

  36. L. Li, F.Y. Wang, Y.X. Zhang, Isospin effects on intermediate mass fragments at intermediate energy-heavy ion collisions. Nucl. Scie. Tech. 33, 58 (2022). https://doi.org/10.1007/s41365-022-01050-w

    Article  Google Scholar 

  37. L.W. Chen, C.M. Ko, B.A. Li, Determination of the stiffness of the nuclear symmetry energy from isospin diffusion. Phys. Rev. Lett. 94, 032701 (2005). https://doi.org/10.1103/PhysRevLett.94.032701

    Article  ADS  Google Scholar 

  38. F. Guan, X. Diao, Y. Wang et al., A compact spectrometer for heavy ion experiments in the fermi energy regime. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 1011, 165592 (2021). https://doi.org/10.1016/j.nima.2021.165592

    Article  Google Scholar 

  39. Y.J. Wang, F.H. Guan, X.Y. Diao et al., Cshine for studies of hbt correlation in heavy ion reactions. Nucl. Sci. Tech. 32, 4 (2021). https://doi.org/10.1007/s41365-020-00842-2

    Article  Google Scholar 

  40. Y. Wang, F. Guan, X. Diao et al., Observing the **-pong modality of the isospin degree of freedom in cluster emission from heavy-ion reactions. Phys. Rev. C 107, L041601 (2023). https://doi.org/10.1103/PhysRevC.107.L041601

    Article  ADS  Google Scholar 

  41. X.Y. Diao, F.H. Guan, Y.J. Wang et al., Reconstruction of fission events in heavy ion reactions with the compact spectrometer for heavy ion experiment. Nucl. Scie. Tech. 33, 40 (2022). https://doi.org/10.1007/s41365-022-01024-y

    Article  Google Scholar 

  42. Z. Sun, W.L. Zhan, Z.Y. Guo et al., RIBLL, the radioactive ion beam line in Lanzhou. Nucl. Instrum. Meth. Phys. Res. Sect. A 503, 496–503 (2003). https://doi.org/10.1016/S0168-9002(03)01005-2

    Article  ADS  Google Scholar 

  43. H.L. Wang, Z. Wang, C.S. Gao et al., Design and tests of the prototype beam monitor of the csr external target experiment. Nucl. Sci. Tech. 33, 36 (2022)

    Article  Google Scholar 

  44. Y. Zhang, Z. Li, Probing the density dependence of the symmetry potential with peripheral heavy-ion collisions. Phys. Rev. C 71, 024604 (2005). https://doi.org/10.1103/PhysRevC.71.024604

    Article  ADS  Google Scholar 

  45. J. Rizzo, M. Colonna, M. Di Toro et al., Transport properties of isospin effective mass splitting. Nucl. Phys. A 732, 202–217 (2004). https://doi.org/10.1016/j.nuclphysa.2003.11.057

    Article  ADS  Google Scholar 

  46. Y. Zhang, N. Wang, Q.F. Li et al., Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys. 15, 54301 (2020). https://doi.org/10.1007/s11467-020-0961-9

    Article  ADS  Google Scholar 

  47. T.H.R. Skyrme, CVII. The nuclear surface. Philos. Mag. J. Theor. Exp. Appl. Phys. 1, 1043–1054 (1956). https://doi.org/10.1080/14786435608238186

    Article  MATH  Google Scholar 

  48. J. Yang, Y. Zhang, N. Wang et al., Influence of the treatment of initialization and mean-field potential on the neutron to proton yield ratios. Phys. Rev. C 104, 024605 (2021). https://doi.org/10.1103/PhysRevC.104.024605

    Article  ADS  Google Scholar 

  49. Y. Zhang, Z. Li, Elliptic flow and system size dependence of transition energies at intermediate energies. Phys. Rev. C 74, 014602 (2006). https://doi.org/10.1103/PhysRevC.74.014602

    Article  ADS  Google Scholar 

  50. Y. Zhang, M. Liu, C.J. **a et al., Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars. Phys. Rev. C 101, 034303 (2020). https://doi.org/10.1103/PhysRevC.101.034303

    Article  ADS  Google Scholar 

  51. F. Zhang, J. Su, Probing neutron-proton effective mass splitting using nuclear stop** and isospin mix in heavy-ion collisions in gev energy region. Nucl. Scie. Tech. 31, 77 (2020). https://doi.org/10.1007/s41365-020-00787-6

    Article  Google Scholar 

  52. H. Wolter, M. Colonna, D. Cozma et al., Transport model comparison studies of intermediate-energy heavy-ion collisions. Prog. Part. Nucl. Phys. 125, 103962 (2022). https://doi.org/10.1016/j.ppnp.2022.103962

    Article  Google Scholar 

  53. J. Xu et al., Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: comparison of heavy-ion transport codes under controlled conditions. Phys. Rev. C 93, 044609 (2016). https://doi.org/10.1103/PhysRevC.93.044609

    Article  ADS  Google Scholar 

  54. Y. Zhang, Z. Li, Elliptic flow and system size dependence of transition energies at intermediate energies. Phys. Rev. C 74, 014602 (2006). https://doi.org/10.1103/PhysRevC.74.014602

    Article  ADS  Google Scholar 

  55. E. Chabanat, P. Bonche, P. Haensel et al., A skyrme parametrization from subnuclear to neutron star densities. Nucl. Phys. A 627, 710–746 (1997). https://doi.org/10.1016/S0375-9474(97)00596-4

    Article  ADS  Google Scholar 

  56. M.B. Tsang, W.A. Friedman, C.K. Gelbke et al., Isotopic scaling in nuclear reactions. Phys. Rev. Lett. 86, 5023–5026 (2001). https://doi.org/10.1103/PhysRevLett.86.5023

    Article  ADS  Google Scholar 

  57. M.B. Tsang, C.K. Gelbke, X.D. Liu et al., Isoscaling in statistical models. Phys. Rev. C 64, 054615 (2001). https://doi.org/10.1103/PhysRevC.64.054615

    Article  ADS  Google Scholar 

  58. A. Ono, P. Danielewicz, W.A. Friedman et al., Isospin fractionation and isoscaling in dynamical simulations of nuclear collisions. Phys. Rev. C 68, 051601 (2003). https://doi.org/10.1103/PhysRevC.68.051601

    Article  ADS  Google Scholar 

  59. S. Das Gupta, A. Mekjian, The thermodynamic model for relativistic heavy ion collisions. Phys. Rep. 72, 131–183 (1981). https://doi.org/10.1016/0370-1573(81)90012-0

    Article  ADS  Google Scholar 

  60. G. Fai, A.Z. Mekjian, Minimal information and statistical descriptions of nuclear fragmentation. Phys. Lett. B 196, 281–284 (1987). https://doi.org/10.1016/0370-2693(87)90731-3

    Article  ADS  Google Scholar 

  61. A.S. Botvina, O.V. Lozhkin, W. Trautmann, Isoscaling in light-ion induced reactions and its statistical interpretation. Phys. Rev. C 65, 044610 (2002). https://doi.org/10.1103/PhysRevC.65.044610

    Article  ADS  Google Scholar 

  62. Z. Chajecki, M. Youngs, D.D.S. Coupland, et al., Scaling properties of light-cluster production. (2014). ar**v:1402.5216

  63. A. Di Bucchianico, Coefficient of Determination (R2) (Wiley, 2008). https://doi.org/10.1002/9780470061572.eqr173

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Fang-Yuan Wang, Jun-** Yang, **ang Chen, Ying Cui, Yong-Jia Wang, Zhi-Gang **ao, Zhu-**a Li, and Ying-Xun Zhang. The first draft of the manuscript was written by Fang-Yuan Wang and Ying-Xun Zhang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ying-Xun Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12275359, 11875323, 11961141003, U2032145, and 11890712), the National Key R &D Program of China (No. 2018YFA0404404), the Continuous Basic Scientific Research Project (Nos. WDJC-2019-13 and BJ20002501), and funding from the China Institute of Atomic Energy (No. YZ222407001301) .

Appendix 1: Single-particle potential

Appendix 1: Single-particle potential

For the Skyrme interaction, the single-particle potential in uniform nuclear matter can be written as the summation of the local and nonlocal (momentum-dependent) parts as follows:

$$\begin{aligned} V_q=V_q^\textrm{loc}+V_{q}^\textrm{md}. \end{aligned}$$
(A.1)

Based on the definition of the single-particle potential, \(V_q\) should be obtained from the derivatives of the net energy E of the system with respect to the number of particles. For the local part, \(V_q^\text {loc}\) is

$$\begin{aligned} \begin{aligned} V^\textrm{loc}_q (\rho , \delta )&= \frac{ \partial u_\textrm{loc }( \rho , \delta ) }{ \partial \rho _q } \\&= \alpha \frac{\rho }{ \rho _0 } + \beta \frac{ \rho ^\eta }{ \rho _0^\eta } + (\eta - 1) B_\textrm{sym} \frac{\rho ^\eta }{\rho _0^\eta }\delta ^2\\&\quad \pm 2 \left( A_\textrm{sym} \frac{\rho }{\rho _0}+ B_\textrm{sym} \left( \frac{\rho }{\rho _0} \right) ^{\eta } \right) \delta , \end{aligned} \end{aligned}$$
(A.2)

where ‘\(+\)’ is for neutrons and ‘−’ for protons. The nonlocal part of the single-particle potential depends not only on the position but also on the momentum, which can be obtained by taking the functional derivative of the energy density with respect to the phase-space distribution function of protons or neutrons \(f_q(r,p)\):

$$\begin{aligned} \begin{aligned} V^\textrm{md}_q(\rho ,\delta ,p)&= \frac{\delta u_\textrm{md}}{\delta f_q} \\&= 2(C_0\rho +D_0\rho _q)p^2+ 2\hbar ^2C_0\tau +2\hbar ^2D_0\tau _q, \end{aligned} \end{aligned}$$
(A.3)

where \(\tau\) is the kinetic energy density and is the summation of the kinetic energy densities of neutrons and protons (i.e.,\(\tau =\tau _\text{n}+\tau _\text{p}\)) and \(\tau _q=\frac{3}{5}k_{q,F}^2\rho _q\), with \(k_{q,F}=(3\pi ^2\rho _q)^{1/3}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, FY., Yang, JP., Chen, X. et al. Probing nucleon effective mass splitting with light particle emission. NUCL SCI TECH 34, 94 (2023). https://doi.org/10.1007/s41365-023-01241-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01241-z

Keywords

Navigation