Log in

Neutronic study on the effect of first wall material thickness on tritium production and material damage in a fusion reactor

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this study, the effects of changing first wall materials and their thicknesses on a reactor were investigated to determine the displacement per atom (DPA) and gas production (helium and hydrogen) in the first wall, as well as the tritium breeding ratio (TBR) in the coolant and tritium breeding zones. Therefore, the modeling of the magnetic fusion reactor was determined based on the blanket parameters of the International Thermonuclear Experimental Reactor (ITER). Stainless steel (SS 316 LN-IG), Oxide Dispersion Strengthened Steel alloy (PM2000 ODS), and China low-activation martensitic steel (CLAM) were used as the first wall (FW) materials. Fluoride family molten salt materials (FLiBe, FLiNaBe, FLiPb) and lithium oxide (LiO2) were considered the coolant and tritium production material in the blanket, respectively. Neutron transport calculations were performed using the well-known 3D code MCNP5 using the continuous-energy Monte Carlo method. The built-in continuous energy nuclear and atomic data libraries along with the Evaluated Nuclear Data file (ENDF) system (ENDF/B-V and ENDF/B-VI) were used. Additionally, the activity cross-section data library CLAW-IV was used to evaluate both the DPA values and gas production of the first wall (FW) materials. An interface computer program written in the FORTRAN 90 language to evaluate the MCNP5 outputs was developed for the fusion reactor blanket. The results indicated that the best TBR value was obtained for the use of the FLiPb coolant, whereas depending on the thickness, the first wall replacement period in terms of radiation damage to all materials was between 6 and 11 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.A. El-Guebaly, Fifty years of magnetic fusion research (1958–2008): Brief historical overview and discussion of future trends. Energies 3, 1067–1086 (2010). https://doi.org/10.3390/en30601067

    Article  Google Scholar 

  2. ITER, EDA, Documentation Series No. 24 ITER Technical Basis. IAEA, Vienna -pub. iaea.org/MTCD/publications/PDF/ITER-EDA-DS-24. pdf (2002).

  3. M.E. Sawan, M.A. Abdou, Physics and technology conditions for attaining tritium self-sufficiency for the DT fuel cycle. Fusion Eng. Des. 81, 1131–1144 (2006). https://doi.org/10.1016/j.fusengdes.2005.07.035

    Article  Google Scholar 

  4. H.M. Şahin, Monte Carlo calculation of radiation damage in first wall of an experimental hybrid reactor. Ann. Nucl. Energy 34, 861–870 (2007). https://doi.org/10.1016/j.anucene.2007.04.011

    Article  MathSciNet  Google Scholar 

  5. B. Soltani, M. Habibi, Tritium breeding ratio calculation for ITER tokamak using developed helium cooled pebble bed blanket (HCPB). J. Fusion Energy 34, 604–607 (2015). https://doi.org/10.1007/s10894-015-9847-1

    Article  Google Scholar 

  6. F.A. Hernández, P. Pereslavtsev, First principles review of options for tritium breeder and neutron multiplier materials for breeding blankets in fusion reactors. Fusion Eng. Des. 137, 243–256 (2018). https://doi.org/10.1016/j.fusengdes.2018.09.014

    Article  Google Scholar 

  7. K. Tobita, S. Nishio, A. Saito et al., Water-cooled solid breeding blanket for DEMO. Paper Presented at the 18th International Toki Conference (ITC18), February, Development of Physics and Technology of Stellarators/Heliotrons en route to DEMO, (Toki, Japan 2009)

  8. S. Şahin, A. Şahinaslan, M. Kaya, Neutronic calculations for a magnetic fusion energy reactor with liquid protection for the first wall. Fusion Technol. 34, 95–108 (1998). https://doi.org/10.13182/FST98-A56

    Article  Google Scholar 

  9. S. Yalçin, M. Übeyli, A. Acir, Neutronic analysis of a high-power density hybrid reactor using innovative coolants. Sadhana 30, 585–600 (2005). https://doi.org/10.1007/BF02703281

    Article  Google Scholar 

  10. S. Şahin, H.M. Şahin, A. Acır, LIFE hybrid reactor as reactor grade plutonium burner. Energy Convers. Manag. 63, 44–50 (2012). https://doi.org/10.1016/j.enconman.2011.12.031

    Article  Google Scholar 

  11. M. Sawan, Tritium Breeding Potential of Lithium-Tin. APEX Proj. Meet. (1998).

  12. M.Z. Youssef, M.E. Sawan, D.K. Sze, The breeding potential of “Flinabe” and comparison to “Flibe” in “CliFF” high power density concept. Fusion Eng. Des. 61, 497–503 (2002). https://doi.org/10.1016/S0920-3796(02)00245-4

    Article  Google Scholar 

  13. H.M. Şahin, G. Tunç, N. Şahin, Investigation of tritium breeding ratio using different coolant material in a fusion-fission hybrid reactor. Int. J. Hydrogen Energy 41, 7069–7075 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.174

    Article  Google Scholar 

  14. H.M. Şahin, A. Acır, T. Altınok et al., Monte Carlo calculation for various enrichment lithium coolant using different data libraries in a hybrid reactor. Energy Convers. Manag. 49, 1960–1965 (2008). https://doi.org/10.1016/j.enconman.2007.09.028

    Article  Google Scholar 

  15. M. Übeyli, On the tritium breeding capability of Flibe, Flinabe, and Li 20Sn80 in a fusion-fission (hybrid) reactor. J. Fusion Energy 22, 51–57 (2003). https://doi.org/10.1023/B:JOFE.0000021555.70423.f1

    Article  ADS  Google Scholar 

  16. S. Şahin, H.M. Şahin, H. Şahiner et al., Study on the fusion reactor performance with different materials and nuclear waste actinides. Int. J. Energy Res. 45, 11759–11774 (2020). https://doi.org/10.1002/er.5708

    Article  Google Scholar 

  17. J.P. Catalán, F. Ogando, J. Sanz et al., Neutronic analysis of a dual He/LiPb coolant breeding blanket for DEMO. Fusion Eng. Des. 86, 2293–2296 (2011). https://doi.org/10.1016/j.fusengdes.2011.03.030

    Article  Google Scholar 

  18. S. Wang, F.A. Hernández, E. Bubelis et al., Comparative analysis of the efficiency of a CO2-cooled and a He-cooled pebble bed breeding blanket for the EU DEMO fusion reactor. Fusion Eng. Des. 138, 32–40 (2019). https://doi.org/10.1016/j.fusengdes.2018.10.026

    Article  Google Scholar 

  19. M.S. Tillack et al., Technology readiness of helium as a fusion power core coolant. Center Energy Res. 25, 61 (2014)

    Google Scholar 

  20. R.R. Romatoski, L.W. Hu, Fluoride salt coolant properties for nuclear reactor applications: a review. Ann. Nucl. Energy 109, 635–647 (2017). https://doi.org/10.1016/j.anucene.2017.05.036

    Article  Google Scholar 

  21. R. Boullon, J.-C. Jaboulay, J. Aubert, Molten salt breeding blanket: Investigations and proposals of pre-conceptual design options for testing in DEMO. Fusion Eng. Des. 171, 112707 (2021). https://doi.org/10.1016/j.fusengdes.2021.112707

    Article  Google Scholar 

  22. L.C. Cadwallader, Qualitative reliability issues for in-vessel solid and liquid wall fusion designs. Fusion Technol. 39, 991–995 (2001). https://doi.org/10.13182/fst01-a11963371

    Article  Google Scholar 

  23. F. Dobran, Fusion energy conversion in magnetically confined plasma reactors. Prog. Nucl. Energy 60, 89–116 (2012). https://doi.org/10.1016/j.pnucene.2012.05.008

    Article  Google Scholar 

  24. G. Tunç, H.M. Şahin, S. Şahin, Evaluation of the radiation damage parameters of ODS steel alloys in the first wall of deuterium-tritium fusion-fission (hybrid) reactors. Int. J. Energy Res. 42, 198–206 (2018). https://doi.org/10.1002/er.3782

    Article  Google Scholar 

  25. T. Muroga, Vanadium alloys for fusion blanket applications. Mater. Trans. 46(3), 405–411 (2005). https://doi.org/10.2320/matertrans.46.405

    Article  Google Scholar 

  26. Q. Huang, C. Li, Y. Li et al., Progress in development of China Low Activation Martensitic steel for fusion application. J. Nucl. Materials 367, 142–146 (2007). https://doi.org/10.1016/j.jnucmat.2007.03.153

    Article  ADS  Google Scholar 

  27. G. McCracken, P. Stott, Chapter 13 - Fusion Power Plants, ed. by Garry McCracken, Peter Stott, Fusion (Second Edition), (Academic Press, 2013) 165–187 (2013). doi: https://doi.org/10.1016/B978-0-12-384656-3.00013-1

  28. K. Ioki, G. Johnson, K. Shimizu et al., Design of the ITER vacuum vessel. Fusion Eng. Des. 27, 39–51 (1995). https://doi.org/10.1016/0920-3796(95)90116-7

    Article  Google Scholar 

  29. A. Araujo, C. Pereira, M.A.F. Veloso et al., Flux and dose rate evaluation of ITER system using MCNP-a preliminary simulation. Braz. J. Phys. 40, 55053633 (2010). https://doi.org/10.1590/S0103-97332010000100010

    Article  Google Scholar 

  30. X-5 Monte Carlo Team, “MCNP - Version 5, Vol. I: Overview and Theory", LA-UR-03–1987 (2003).

  31. D. Garber, C. Dunford, S. Pearlstein, Data Formats and procedures for the evaluated nuclear data file, ENDF. No. BNL-NCS-50496; ENDF-102. Brookhaven National Lab., Upton, NY, USA, (1975).

  32. M.E. Battat, ANS-6.1. 1 Working group, “American National Standard Neutron and Gamma-Ray Flux-to-Dose Rate factors”. ANSI/ANS-6.1. 1–1977, American Nuclear Society, LaGrange Park, Illinois, USA, (1977).

  33. R. Kinsey, Data formats and procedures for the evaluated nuclear data file, ENDF. No. BNL-NCS--50496 (ED. 2). Brookhaven National Lab. (1979).

  34. P.F. Rose, ENDF-201: ENDF/B-VI summary documentation. No. BNL-NCS-17541; ENDF-201. Brookhaven National Lab., Upton, NY (United States), (1991).

  35. T.A. Al-Kusayer, S. Şahin, A. Drira. CLAW-IV coupled 30 neutrons, 12 gamma-ray group cross sections with retrieval programs for radiation transport calculations. Radiation Shielding Information Center, RSIC Newsletter, Oak Ridge National Laboratory 4 (1988).

  36. G. Tunc, Ph.D. Dissertation (Department of Energy Systems Engineering Gazi University, 2017) (in Turkish)

  37. S. Şahin, H.M., Şahin, T. Tunç, Monte Carlo analysis of LWR spent fuel transmutation in a fusion-fission hybrid reactor system. Nucl. Eng. Technol. 50, 1339–1348 (2018). https://doi.org/10.1016/j.net.2018.08.006

    Article  Google Scholar 

  38. M., Rubel, Fusion neutrons: Tritium breeding and impact on wall materials and components of diagnostic systems. J. Fusion Energy 38, 315–329 (2019). https://doi.org/10.1007/s10894-018-0182-1

    Article  Google Scholar 

  39. Nuclear Data Center at Korea Atomic Energy Research Institute (KAERI). Nuclear Data Plotter, https://atom.kaeri.re.kr/nuchart/plotEvaf.jsp; [accessed October 19, 2021].

  40. R.W. Moir, R.L. Bieri, X.W. Chen et al., HYLIFE-II: a molten-salt inertial fusion energy power plant designing. Final Report. Fusion Technol. 25, 5–25 (1994). https://doi.org/10.13182/FST94-A30234

    Article  Google Scholar 

  41. D.L. Smith, C.C. Baker, D.K. Sze et al., Overview of the blanket comparison and selection study. Fusion Technol. 8, 10–44 (1985). https://doi.org/10.13182/FST85-4

    Article  Google Scholar 

  42. J.A. Blink, W.J. Hogam, J. Hovingh et al. High-yield lithium-injection fusion-energy (HYLIFE) reactor. No. UCRL-53559. Lawrence Livermore National Lab., CA, USA, (1985). doi: https://doi.org/10.2172/6124368

  43. M. Perlado et al. Radiation Damage in Structural Materials, Energy from Inertial Fusion, International Atomic Energy Agency, 272, Vienna (1995).

  44. M. Herman, A. Trkov, R. Capote et al., Evaluation of neutron reactions on iron isotopes for CIELO and ENDF/B-VIII. 0. Nuclear Data Sheets 148, 214–253 (2018). doi: https://doi.org/10.1016/j.nds.2018.02.004

  45. J.J. Duderstadt, G.A. Moses, Inertial confinement fusion. (John Wiley & Sons, 1982).

  46. E.A. Hofman, W.M. Stacey, N.E. Hertel et al., Radioactive waste disposal characteristics of candidate tokamak demonstration reactors. Fusion Technol. 31, 35–62 (1997). https://doi.org/10.13182/FST97-A30779

    Article  Google Scholar 

  47. M.Z. Youssef, C. Wong, Neutronics performance of high temperature refractory alloy helium-cooled blankets for fusion application. Fusion Eng. Des. 49–50, 727 (2000). https://doi.org/10.1016/S0920-3796(00)00182-4

    Article  Google Scholar 

  48. A. S. T. M. Standard, Standard Practice for Characterizing Neutron Exposure in Iron and Low Alloy Steels in Terms of Displacements Per Atom (dpa). (2001).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by HMŞ, GT, AK, and MMO. The first draft of the manuscript was written by HMŞ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hacı Mehmet Şahin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, H.M., Tunç, G., Karakoç, A. et al. Neutronic study on the effect of first wall material thickness on tritium production and material damage in a fusion reactor. NUCL SCI TECH 33, 43 (2022). https://doi.org/10.1007/s41365-022-01029-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01029-7

Keywords

Navigation