Log in

High-precision and wide-range real-time neutron flux monitor system through multipoint linear calibration

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The neutron flux monitor (NFM) system is an important diagnostic subsystem introduced by large nuclear fusion devices such as international thermonuclear experimental reactor (ITER), Japan torus-60, tokamak fusion test reactor, and HL-2A. Neutron fluxes can provide real-time parameters for nuclear fusion, including neutron source intensity and fusion power. Corresponding to different nuclear reaction periods, neutron fluxes span over seven decades, thereby requiring electronic devices to operate in counting and Campbelling modes simultaneously. Therefore, it is crucial to design a real-time NFM system to encompass such a wide dynamic range. In this study, a high-precision NFM system with a wide measurement range of neutron flux is implemented using real-time multipoint linear calibration. It can automatically switch between counting and Campbelling modes with variations in the neutron flux. We established a testing platform to verify the feasibility of the NFM system, which can output the simulated neutron signal using an arbitrary waveform generator. Meanwhile, the accurate calibration interval of the Campbelling mode is defined well. Based on the above-mentioned design, the system satisfies the requirements, offering a dynamic range of 108 cps, temporal resolution of 1 ms, and maximal relative error of 4% measured at the signal-to-noise ratio of 15.8 dB. Additionally, the NFM system is verified in a field experiment involving HL-2A, and the measured neutron flux is consistent with the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.W. Yang, Q.W. Yang, G.S. **ao et al., Fusion neutron flux monitor for ITER. Plasma Sci. Technol. 10, 141 (2008). https://doi.org/10.1088/1009-0630/10/2/01

    Article  Google Scholar 

  2. A.J.H. Donné, A.E. Costley, R. Barnsley et al., Chapter 7: diagnostics. Nucl. Fusion 47, S337 (2007). https://doi.org/10.1088/0029-5515/47/6/S07

    Article  Google Scholar 

  3. L. Bertalot, V. Krasilnikov, L. Core et al., Present status of ITER neutron diagnostics development. J. Fusion Energy (2019). https://doi.org/10.1007/s10894-019-00220-w

    Article  Google Scholar 

  4. G. Vayakis, S. Arshad, D. Delhom et al., Development of the ITER magnetic diagnostic set and specification. Rev. Sci. Instrum. (2012). https://doi.org/10.1063/1.4732077

    Article  Google Scholar 

  5. C.J. Tang, C.J. **ao, Y.G. Yao et al., Development of neutron depth profiling system at CARR. Nucl. Tech. 42, 040402 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.040402. (in Chinese)

    Article  Google Scholar 

  6. Z.J. Liu, Y.W. Yang, L. Zheng et al., Measurement and analysis of the 232Th(n,2n) reaction rate in a polyethylene shell with DT neutrons. Nucl. Tech. 41, 060502 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.060502. (in Chinese)

    Article  Google Scholar 

  7. B.W. Zheng, C.Y. Jiang, Z.H. Liu et al., Correction and verification of HL-2A Tokamak Bonner sphere spectrometer in monoenergetic neutron fields from 100 keV to 5 MeV. Nucl. Sci. Tech. 30, 159 (2019). https://doi.org/10.1007/s41365-019-0689-9

    Article  Google Scholar 

  8. M. Sasao, A.V. Krasilnikov, T. Nishitani et al., Overview of neutron and confined/esca** alpha diagnostics planned for ITER. Plasma Phys. Control. Fusion 46, S107 (2004). https://doi.org/10.1088/0741-3335/46/7/S08

    Article  Google Scholar 

  9. C.W. Barnes, A.L. Roquemore, Neutron source strength monitors for ITER. Rev. Sci. Instrum. 68, 573 (1997). https://doi.org/10.1063/1.1147656

    Article  Google Scholar 

  10. H.K. Zhang, Y.T. Zhao, A. Liu et al., On-line monitoring of the thermal neutron sensitivity of Co-SPND detector. Nucl. Tech. 43, 040003 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.040003. (in Chinese)

    Article  Google Scholar 

  11. B.W. Zheng, W. Zhang, T.Y. Wu et al., Development of the real-time double-ring fusion neutron time-of-flight spectrometer system at HL-2M. Nucl. Sci. Tech. 30, 175 (2019). https://doi.org/10.1007/s41365-019-0702-3

    Article  Google Scholar 

  12. G.L. Yuan, Q.W. Yang, J.W. Yang et al., Fusion neutron flux detector for the ITER. Plasma Sci. Technol 16, 168 (2014). https://doi.org/10.1088/1009-0630/16/2/14

    Article  Google Scholar 

  13. M.J. Joyce, M.D. Aspinall, F.D. Cave et al., The design, build and test of a digital analyzer for mixed radiation fields. IEEE Trans. Nucl. Sci. 57, 2625 (2010). https://doi.org/10.1109/TNS.2010.2044245

    Article  Google Scholar 

  14. K.A.A. Gamage, M.J. Joyce, J.C. Adams, Combined digital imaging of mixed-field radioactivity with a single detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 635, 74 (2011). https://doi.org/10.1016/J.NIMA.2011.01.033

    Article  Google Scholar 

  15. S. Normand, B. Mouanda, S. Haan et al., Discrimination methods between neutron and gamma rays for boron loaded plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 484, 342 (2002). https://doi.org/10.1016/S0168-9002(01)02016-2

    Article  Google Scholar 

  16. Y.-K. Kim, S.K. Lee, B.H. Kang et al., Performance improvement of neutron flux monitor at KSTAR. J. Instrum. 7, C06013 (2012). https://doi.org/10.1088/1748-0221/7/06/C06013

    Article  Google Scholar 

  17. J. Wu, X. Zhou, C. Yuan et al., A real-time online data acquisition system for Dragon-I linear induction accelerator. Nucl. Sci. Tech. 28, 1 (2017). https://doi.org/10.1007/s41365-017-0182-2

    Article  Google Scholar 

  18. L. Bertalot, R. Barnsley, M.F. Direz et al., Fusion neutron diagnostics on ITER tokamak. J. Instrum. 7, C04012 (2012). https://doi.org/10.1088/1748-0221/7/04/C04012

    Article  Google Scholar 

  19. M. Isobe, K. Ogawa, H. Miyake et al., Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device. Rev. Sci. Instrum. 85, 11E114 (2014). https://doi.org/10.1063/1.4891049

    Article  Google Scholar 

  20. Y. Kaschuck, A. Krasilnikov, A. Alekseyev et al., Neutron flux monitoring system for ITER-FEAT (abstract). Rev. Sci. Instrum. 72, 823 (2001). https://doi.org/10.1063/1.1323487

    Article  Google Scholar 

  21. T. Nishitani, S. Kasai, L.C. Johnson et al., Neutron monitor using microfission chambers for the international thermonuclear experimental reactor. Rev. Sci. Instrum. 70, 1141 (1999). https://doi.org/10.1063/1.1149297

    Article  Google Scholar 

  22. M. Ishikawa, T. Kondoh, T. Nishitani et al., Design of microfission chamber for ITER operations. Rev. Sci. Instrum. 79, 1 (2008). https://doi.org/10.1063/1.2969286

    Article  Google Scholar 

  23. W. Di Wang, H.R. Cao, J. Cao et al., A study of beryllium moderator thickness for a fission chamber with fast neutron measurements. Nucl. Sci. Tech. 28, 1 (2017). https://doi.org/10.1007/s41365-017-0283-y

    Article  Google Scholar 

  24. R.A. Dubridge, Campbell theorem: system concepts and results. IEEE Trans. Nucl. Sci. 14, 241 (1967). https://doi.org/10.1109/TNS.1967.4324422

    Article  Google Scholar 

  25. S.P. Li, X.F. Xu, H.R. Cao et al., Dynamic linear calibration method for a wide range neutron flux monitor system in ITER. Nucl. Sci. Tech. 24, 8 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.04.002

    Article  Google Scholar 

  26. H.R. Cao, S.P. Li, X.F. Xu et al., An automatic gain adjustment Campbell integrator for neutron flux detection in ITER. Nucl. Sci. Tech. 23, 114 (2012)

    Google Scholar 

  27. Y. Endo, T. Ito, E. Seki, A counting-campbelling neutron measurement system and its experimental results by test reactor. IEEE Trans. Nucl. Sci. 29, 714 (1982). https://doi.org/10.1109/TNS.1982.4335943

    Article  Google Scholar 

  28. N. Qiao, D. Li, H.S. **ong, Research on fission chamber signal simulation of wide-range nuclear instrument system. At. Energy Sci. Technol. 47, 1892 (2013)

    Google Scholar 

  29. J.W. Yang, X.Y. Song, W. Zhang et al., Development of prototype neutron flux monitor for ITER. Plasma Sci. Technol. 7, 2860 (2005). https://doi.org/10.1088/1009-0630/7/3/018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **u-Feng Xu.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11475131, 11975307, and 11575184) and the National Magnetic Confinement Fusion Energy Development Research (No. 2013GB104003).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, RJ., Zhou, X., Liu, ZH. et al. High-precision and wide-range real-time neutron flux monitor system through multipoint linear calibration. NUCL SCI TECH 31, 94 (2020). https://doi.org/10.1007/s41365-020-00798-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00798-3

Keywords

Navigation