Log in

Vertical Distribution of Benthic Macrofauna in Intertidal Habitats Frequented by Shorebirds at Merja Zerga Lagoon

  • Published:
Thalassas: An International Journal of Marine Sciences Aims and scope Submit manuscript

Abstract

The distribution of shorebirds is strongly linked to the availability of their prey consisting mainly of benthic invertebrates, especially during wintering and migratory stopovers. To better understand the functioning of this trophic link benthos-shorebirds at intertidal mudflats, it is necessary to evaluate the vertical distribution and importance of the fraction of benthic macrofauna accessible to shorebirds at these habitats. Nineteen stations were sampled in the main mudflats frequented by birds. Samples were cut into three slices of 0–5 cm, 5–15 cm and >15 cm. The results showed a vertical stratification of the benthic macrofauna negatively correlated with the depth of the Merja Zerga lagoon intertidal sediments. The specific richness, density and biomass were concentrated at the surface layer of the sediments and shrink as we go more in depth. The polychaetes showed the most diverse distribution pattern along the three sedimentary layers. While the Bivalves dominated in term of biomass, the Gastropods dominated with regard to density. We observed also that the upper layer is mainly colonized by small species and / or individuals with high density and low biomass; this phenomenon is gradually reversed as we go more in depth. The sedimentary parameters (organic matter content and granulometry of the substrate) were not responsible for the variations observed in the distribution of the macrofauna along the sedimentary profile, as the vertical distribution of these factors was homogeneous to a depth of 20 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acuña k, Duarte C, Jaramillo E, Contreras H, Manzano M, Navarro JM (2012) Vertical distribution of the macroinfauna associated to bivalves in a sedimentary intertidal flat of southern Chile. Rev Biol Mar Oceanogr 47(3):383–393. https://doi.org/10.4067/S0718-19572012000300002

    Article  Google Scholar 

  • Barbosa A, Moreno E (1999) Evolution of foraging strategies in shorebirds: an ecomorphological approach. Auk 116:712–725

    Article  Google Scholar 

  • Benhoussa A (2000) Caractérisation des habitats et microdistribution de l’avifaune de la zone humide de Merja Zerga (Maroc). Thèse de doctorat, Université Mohamed V, Rabat

  • Bocher P, Robin F, Kojadinovic J, Delaporte P, Rousseau P, Dupuy C, Bustamante P (2014) Trophic resource partitioning within a shorebird community feeding on intertidal mudflat habitats. J Sea Res 92:115–124. https://doi.org/10.1016/j.seares.2014.02.011

    Article  Google Scholar 

  • Bouchet VMP, Sauriau PG, Debenay JP, Mermillod-Blondin F, Schmidt S, Amiard JC, Dupas B (2009) Influence of the mode of macrofauna-mediated bioturbation on the vertical distribution of living benthic foraminifera: first insight from axial tomodensitometry. J Exp Mar Biol Eco 371(1):20–33. https://doi.org/10.1016/j.jembe.2008.12.012

    Article  Google Scholar 

  • Cardoso I, Granadeiro JP, Cabral H (2010) Benthic macroinvertebates vertical distribution in the Tagus estuary (Portugal): the influence of tidal cycle. Estuar Coast Shelf Sci 86(4):580–586. https://doi.org/10.1016/j.ecss.2009.11.024

    Article  Google Scholar 

  • Chassé C, Glémarec M (1976) Principes généraux de la classification des fonds pour la cartographie bio-sédimentaire. J Rech Oceanogr 1(3):1–18

  • Cherkaoui I, Lamrani M (2007) Caractérisation ornithologique des habitats naturels de la lagune de Merja Zerga (Maroc). Ostrich 78(2):533–540. https://doi.org/10.2989/OSTRICH.2007.78.2.66.180

    Article  Google Scholar 

  • Clavier J (1984) Distribution verticale de la macrofaune benthique dans un sédiment fin non exondable. Cah Biol Mar 25:141–152

  • Dakki M, Qninba A, El Agbani MA, Benhoussa A, Beaubrun PC (2001) Wintering of waders in Morocco : national population estimates and assessment of the sites ‘importance. Wader Study Group Bull 96:35–47

    Google Scholar 

  • Durou C (2006) Recherche d’indicateurs de l’état physiologique de l’annélide polychète endogée Nereis diversicolor en relation avec la qualité du milieu. Université de Nantes, Faculté des sciences pharmaceutiques

    Google Scholar 

  • Esselink P, Zwarts L (1989) Seasonal trend in burrow depth and tidal variation in feeding activity of Nereis diversicolor. Mar Ecol Prog Ser 56:243–254. https://doi.org/10.3354/meps056243

    Article  Google Scholar 

  • Evans PR, Ward RM, Bone M, Leakey M (1998) Creation of temperate-climate intertidal mudflats: factors affecting colonization and use by benthic invertebrates and their bird predators. Mar Pollut Bull 37:8–12

    Google Scholar 

  • Fasola M, Biddau L (1997) An assemblage of wintering waders in coastal Kenya: activity budget and habitat use. Afr J Ecol 35(4):339–350. https://doi.org/10.1111/j.1365-2028.1997.087-89087.x

    Article  Google Scholar 

  • Filgueiras VL, Campo LS, Lavrado HP, Frensel R, Pollery R (2007) Vertical distribution of macrobenthic infauna from the shallow sublittoral zone of Admiralty Bay, King George Island, Antarctica. Polar Biol 30(11):1439–1447. https://doi.org/10.1007/s00300-007-0305-z

    Article  Google Scholar 

  • Flach E, Heip C (1996) Vertical distribution of macrozoobenthos within the sediment on the continental slope of the Goban Spur area (NE Atlantic). Mar Ecol Prog Ser 141:55–66. https://doi.org/10.3354/meps141055

    Article  Google Scholar 

  • Fonseca VG, Grade N, Cancela da Fonseca L (2004) Patterns of association and habitat use by migrating shorebirds on intertidal mudflats and saltworks on the Tavira estuary, Ria Formosa, southern Portugal. Wader Study Group Bull 105:50–55

    Google Scholar 

  • François F, Gerino M, Stora G, Durbec JP, Poggiale JC (2002) Functional approach to sediment reworking by gallery-forming macrobenthic organisms: modeling and application with the polychaete Nereis diversicolor. Mar Ecol Prog Ser 229:127–136. https://doi.org/10.3354/meps229127

    Article  Google Scholar 

  • Garmendia JM, Mora JMPJ (2003) Niveles de penetración de los diferentes grupos macroinfaunales en los sedimentos arenosos sublitorales de la ría de Ares y Betanzos (Galicia) (noroeste de la península Ibérica). Bol Inst Esp Oceanogr 19:283–291

    Google Scholar 

  • Gérino M, Frignani M, Mugnai C, Belluci L, Prevedelli D, Valentini A, Castelli A, Delmotte S, Sauvage S (2007) Bioturbation in the Venice lagoon: rates and relationship to organisms. Acta Oecol 32(1):14–25. https://doi.org/10.1016/j.actao.2007.02.003

    Article  Google Scholar 

  • Gilbert F, Hulth S, Grossi V, Poggiale JC, Desrosiers G, Rosenberg R, Gerino M, Francois-Carcaillet F, Michaud E, Stora G (2007) Sediment reworking by marine benthic species from the Gullmar Fjord (Western Sweden): importance of faunal biovolume. J Exp Mar Biol Ecol 348(1-2):133–144. https://doi.org/10.1016/j.jembe.2007.04.015

    Article  Google Scholar 

  • Goeij P, Luttikhuizen PC, van der Meer J, Piersma T (2001) Facilitation on an intertidal mudflat: the effect of siphon nip** by flatfish on burying depth of the bivalve Macoma balthica. Oecologia 126(4):500–506. https://doi.org/10.1007/s004420000526

    Article  Google Scholar 

  • Goss-Custard JD (1996) The oystercatcher: from individuals to populations. Oxford University Press, Oxford

    Google Scholar 

  • Guerra-García JM, Corzo JR, García-Gómez JC (2003) Distribución vertical de la macrofauna en sedimentos contaminados del interior del puerto de Ceuta. Bol Inst Esp Oceanogr 19:105–121

    Google Scholar 

  • Hines AH, Comtois KL (1985) Vertical distribution of infauna in sediments of a subestuary of Central Chesapeake Bay. Estuaries 8(3):296–304. https://doi.org/10.2307/1351490

    Article  Google Scholar 

  • Jaramillo E, Contreras H, Duarte C (2007) Community structure of the macroinfauna inhabiting tidal flats characterized by the presence of different species of burrowing bivalves in Southern Chile. Hydrobiologia 580(1):85–96. https://doi.org/10.1007/s10750-006-0463-y

    Article  Google Scholar 

  • Johnson RG (1967) The vertical distribution of the infauna of a sand flat. Ecology 48(4):571–578. https://doi.org/10.2307/1936501

    Article  Google Scholar 

  • Josefson AB (1989) Do subsurface deposit-feeder partition resources by vertical stratification in the sediment? Sci Mar 53:307–313

    Google Scholar 

  • Lourenço PM, Catry T, Piersma T, Granadeiro JP (2016) Comparative feeding ecology of shorebirds wintering at Banc d’Arguin, Mauritania. Estuar Coast 39(3):855–865. https://doi.org/10.1007/s12237-015-0029-1

    Article  Google Scholar 

  • Luczak C, Menu D, Rolet C (2013) A multilevel core sampler device to directly estimate food supply accessible to waders. OJMS 3(02):52–65. https://doi.org/10.4236/ojms.2013.32A006

    Article  Google Scholar 

  • Meadows PS, Tait J (1989) Modification of sediment permeability and shear strength by two burrowing invertebrate. Mar Biol 101(1):75–82. https://doi.org/10.1007/BF00393480

    Article  Google Scholar 

  • Mermillod-Blondin F, Rosenberg R (2006) Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquat Sci 68(4):434–442. https://doi.org/10.1007/s00027-006-0858-x

    Article  Google Scholar 

  • Michaud G, Ferron J (1990) Prey selection by four shorebird species (Charadrii) passing through the SaintLaurent estuary on their southward migration. Can J Zool 68(6):1154–1162. https://doi.org/10.1139/z90-171

    Article  Google Scholar 

  • Michaud E, Desrosiers G, Mermillod-Blondin F, Sundby B, Stora G (2006) The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface. J Exp Mar Biol Ecol 337(2):178–189. https://doi.org/10.1016/j.jembe.2006.06.025

    Article  Google Scholar 

  • Mucha AP, Vasconcelos MT, Bórdalo AA (2004) Vertical distribution of the macrobenthic community and its relationships to trace metals and natural sediment characteristics in the lower Douro estuary, Portugal. Estuar Coast Shelf Sci 59(4):663–673. https://doi.org/10.1016/j.ecss.2003.11.010

    Article  Google Scholar 

  • Muniz P, Pires-Vanin AMS, Venturini N (2013) Vertical distribution patterns of macrofauna in a subtropical near-shore coastal area affected by urban sewage. Mar Ecol 34(2):233–250. https://doi.org/10.1111/maec.12010

    Article  Google Scholar 

  • Palacio J, Lastra M, Mora J (1993) Distribución vertical de la macroinfauna intermareal en la Ensenada de Lourizan (Ría de Pontevedra). Thalassas 9:49–62

    Google Scholar 

  • Ponsero A, Sturbois A, Desroy N, Le Mao P, Jones A, Fournier J (2016) How do macrobenthic resources concentrate foraging waders in large megatidal sand flats. Estuar Coast Shelf Sci 178:120–128. https://doi.org/10.1016/j.ecss.2016.05.023

    Article  Google Scholar 

  • Poznańska-Kakareko M, Budka M, Żbikowski J, Czarnecka M, Kakareko T, Jermacz L, Kobak J (2017) Survival and vertical distribution of macroinvertebrates during emersion of sandy substratum in outdoor mésocosmes. Fundam Appl Limnol 190(1):29–47. https://doi.org/10.1127/fal/2017/1017

    Article  Google Scholar 

  • Qninba A, Dakki M, Benhoussa A, EL Agbani MA (2007) Rôle de la côte Atlantique marocaine dans l’hivernage des limicoles (Aves, Charadrii). Ostrich 78(2):489–493. https://doi.org/10.2989/OSTRICH.2007.78.2.59.173

    Article  Google Scholar 

  • Queirós AM, Hiddink JG, Johnson G, Cabral HN, Kaiser MJ (2011) Context dependence of marine ecosystem engineer invasion impacts on benthic ecosystem functioning. Biol Invasions 13(5):1059–1075. https://doi.org/10.1007/s10530-011-9948-3

    Article  Google Scholar 

  • Quijón P, Jaramillo E (1996) Seasonal vertical distribution of the intertidal macroinfauna in an estuary of south-central Chile. Estuar Coast Shelf Sci 43:53–663

    Article  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing .R Foundation for Statistical Computing. URL http://www.R-project.org

  • Reading CF, Mcgrorty S (1978) Seasonal variations in the burying depth of Macoma balthica (L.) and its accessibility to wading birds. Estuarine Coastal Mar Sci 6(2):135–144. https://doi.org/10.1016/0302-3524(78)90095-6

    Article  Google Scholar 

  • Rodil IF, Cividanes S, Lastra M, Lopez J (2008) Seasonal variability in the vertical distribution of benthic macrofauna and sedimentary organic matter in an estuarine beach (NW Spain). Estuar Coast 31(2):382–395. https://doi.org/10.1007/s12237-007-9017-4

    Article  Google Scholar 

  • Rolet C (2015) Les communautés macrozoobenthiques des sédiments meubles intertidaux du littoral Nord - Pas-de-Calais : Structure, relations avec les limicoles hivernants et enjeux de conservation. Thèse de doctorat, Lille 1

  • Rosa LC, Bemvenuti CE (2006) Seasonal stratification of the estuarine macroinfauna of the Patos lagoon estuary, Southern Brazil. Thalassas 22:17–23

    Google Scholar 

  • Smith CR, Kukert H (1996) Macrobenthic community structure, secondary production, and rates of bioturbation and sedimentation at the Kiine’ohe bay lagoon floor. Pac Sci 50:211–229

    Google Scholar 

  • Valencia B, Herrera L, Giraldo A (2014) Estructura de la comunidad y distribución vertical de la macrofauna de fondos blandos en isla Gorgona. Pacífico Colombian 62:169–188

    Google Scholar 

  • Van de Kam J, Ens BJ, Piersma T, Zwarts L (2004) Shorebirds. An illustrated behavioural ecology KNNV publishers. Utrecht 1–368

  • Volkenborn N, Polerecky D, Beer D (2007) Bioturbation and bioirrigation extend the open exchange regions in permeable sediments. Limnol Oceanogr 52(5):1898–1909. https://doi.org/10.4319/lo.2007.52.5.1898

    Article  Google Scholar 

  • Zwarts L, Blomert AM (1992) Why knot Cahdris canutus take medium-sized Macoma balthica when six prey species are available. Mar Ecol Prog Ser 83:113–128. https://doi.org/10.3354/meps083113

    Article  Google Scholar 

  • Zwarts L, Wanink JH (1993) How the food supply harvestable by waders in the Wadden Sea depends on the variation in energy density, body weight, biomass, burying depth and behaviour of tidal-flat invertebrates. Neth J Sea Res 31(4):441–476. https://doi.org/10.1016/0077-7579(93)90059-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feirouz Touhami.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touhami, F., Bazairi, H., Badaoui, B. et al. Vertical Distribution of Benthic Macrofauna in Intertidal Habitats Frequented by Shorebirds at Merja Zerga Lagoon. Thalassas 34, 255–265 (2018). https://doi.org/10.1007/s41208-017-0059-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41208-017-0059-5

Keywords

Navigation