Log in

Photocatalytic performance of pristine and cobalt loaded BiVO4 nanocomposites for effective degradation of p-nitrophenol organic pollutants

  • Original Paper
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Hydrothermal synthesis was used to produce pure BiVO4 and Cobalt-doped BiVO4 nanocomposites of different compositions with the goal of develo** a low-priced, special-class, cobalt-doped, stained Nanocomposites. X-ray diffraction analysis shows that the mean crystallite size of BiVO4 was 6.7 nm, whereas the mean crystallite size of Cobalt-doped BiVO4 nanocomposites ranges from 12.6 to 26.3 nm. Scanning electron microscopy revealed a few aggregated nanocomposite rods, energy-dispersive spectroscopy confirmed the completeness of the included doped nanocomposites by revealing the absence of any component other than bismuth, vanadium, cobalt, and oxygen, transmission electron microscopy revealed that the nanorod formed in a cubic shape, demonstrating the severe consequences of the dopant in the adsorbent; and According to BET study, the average particle size of BiVO4 and Co-loaded BiVO4 Nanocomposites was 8.76 nm and 7.64 nm, respectively. The figure shows that when the concentration of p-nitrophenol to be eliminated increases from 50 to 150 mg/L, the elimination rate decreases from 99.90 to 94.58%. Utilizing UV irradiation and photocatalytically active BiVO4 and BiVO4/Co nanocomposites, para-nitrophenol was effectively photocatalyzed, as shown by BET analysis. The photocatalytic activity of BiVO4 and Cobalt BiVO4 was tested using UV light, and after 75 min, 80% and 99.9% of para nitrophenols were destroyed. Significant crises required 75 min (99.99% longer) to resolve when cobalt-doped BiVO4 was present compared to when it was utilized alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data available on reasonable request.

References

  1. Chen R, Yang L, Guo Y, Zheng W, Liu H, Wei Y (2018) Effect of p-nitrophenol degradation in aqueous dispersions of different crystallized goethites. J Photochem Photobiol A 353:337–343

    Article  CAS  Google Scholar 

  2. Vieira GB, José HJ, Peterson M, Baldissarelli VZ, Alvarez P, Moreira RDFPM (2018) CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension. J Photochem Photobiol A 353:325–336

    Article  CAS  Google Scholar 

  3. Rao MPC, Kulandaivelu K, Ponnusamy VK, Wu JJ, Sambandam A (2020) Surfactant-assisted synthesis of copper oxide nanorods for the enhanced photocatalytic degradation of Reactive Black 5 dye in wastewater. Environ Sci Pollut Res 27:17438–17445

    Article  CAS  Google Scholar 

  4. Baruah D, Yadav RNS, Yadav A, Das AM (2019) Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. J Photochem Photobiol, B 201:111649

    Article  CAS  PubMed  Google Scholar 

  5. Wabaidur SM, Khan MA, Siddiqui MR, Otero M, Jeon BH, Alothman ZA, Hakami AAH (2020) Oxygenated functionalities enriched MWCNTs decorated with silica coated spinel ferrite–a nanocomposite for potentially rapid and efficient de-colorization of aquatic environment. J Mol Liq 317:113916

    Article  CAS  Google Scholar 

  6. Seisenbaeva GA, Ali LM, Vardanyan A, Gary-Bobo M, Budnyak TM, Kessler VG, Durand JO (2021) Mesoporous silica adsorbents modified with amino polycarboxylate ligands–functional characteristics, health and environmental effects. J Hazard Mater 406:124698

    Article  CAS  PubMed  Google Scholar 

  7. Jain SN, Gogate PR (2018) Efficient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: batch and column studies. J Environ Manage 210:226–238

    Article  CAS  PubMed  Google Scholar 

  8. Wan N, Gu JD, Yan Y (2007) Degradation of p-nitrophenol by Achromobacter xylosoxidans Ns isolated from wetland sediment. Int Biodeterior Biodegradation 59(2):90–96

    Article  CAS  Google Scholar 

  9. Samuel MS, Sivaramakrishna A, Mehta A (2014) Bioremediation of p-Nitrophenol by Pseudomonas putida 1274 strain. J Environ Health Sci Eng 12:1–8

    Article  Google Scholar 

  10. Varma RJ, Gaikwad BG (2009) Biodegradation and phenol tolerance by recycled cells of Candida tropicalis NCIM 3556. Int Biodeterior Biodegradation 63(4):539–542

    Article  CAS  Google Scholar 

  11. Wang Y, Gao BY, Yue QY, Wei JC, Zhou WZ, Gu R (2007) Color removal from textile industry wastewater using composite flocculants. Environ Technol 28(6):629–637

    Article  CAS  PubMed  Google Scholar 

  12. Chang L, Li J, Duan X, Liu W (2015) Porous carbon derived from Metal–organic framework (MOF) for capacitive deionization electrode. Electrochim Acta 176:956–964

    Article  CAS  Google Scholar 

  13. Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C, Carrière M (2009) Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43(21):8423–8429

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Xu H, Zhang Y, Jiang Q, Reddy N, Yang Y (2013) Biodegradable hollow zein nanoparticles for removal of reactive dyes from wastewater. J Environ Manage 125:33–40

    Article  CAS  PubMed  Google Scholar 

  15. Lade HS, Waghmode TR, Kadam AA, Govindwar SP (2012) Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium. Int Biodeterior Biodegradation 72:94–107

    Article  CAS  Google Scholar 

  16. Chen H, Nan Chen Yu, Gao CF (2018) Photocatalytic degradation of methylene blue by magnetically recoverable Fe3O4/Ag6Si2O7 under simulated visible light. Powder Technol 326:247–254

    Article  CAS  Google Scholar 

  17. Hernández S, Blengini GA, Russo N, Fino D (2012) Kinetic study of diesel soot combustion with perovskite catalysts. Ind Eng Chem Res 51(22):7584–7589

    Article  Google Scholar 

  18. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, **a H (2017) Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 23(7):859–868

    Article  CAS  PubMed  Google Scholar 

  19. Zhao G, Liu W, Li J, Lv Q, Li W, Liang L (2016) Facile synthesis of hierarchically structured BiVO4 oriented along (010) facets with different morphologies and their photocatalytic properties. Appl Surf Sci 390:531–539

    Article  CAS  ADS  Google Scholar 

  20. Zhao D, Sheng G, Chen C, Wang X (2012) Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@ TiO2 dyade structure. Appl Catal B 111:303–308

    Article  Google Scholar 

  21. Zou L, Wang H, Wang X (2017) High efficient photodegradation and photocatalytic hydrogen production of CdS/BiVO4 heterostructure through Z-scheme process. ACS Sustain Chem Eng 5(1):303–309

    Article  CAS  Google Scholar 

  22. Shen Y, Huang M, Huang Y, Lin J, Wu J (2010) The synthesis of bismuth vanadate powders and their photocatalytic properties under visible light irradiation. J Alloy Compd 496(1–2):287–292

    Article  CAS  Google Scholar 

  23. Walid A, Soeparman S, Wahyudi S, Sasongko MN (2021) The effect of nickel doped Bismuth Vanadium Oxide on microstructures and electric properties towards BiVO4-NiO composite. Mater Chem Phys 265:124452

    Article  CAS  Google Scholar 

  24. Akhtar P, Khan MJI, Ramay SM, Mahmood A, Saleem M, Kanwal Z (2021) Ab-initio and experimental investigations on Pt: MoS2 for electronic and optical applications. Chem Phys Lett 780:138938

    Article  CAS  Google Scholar 

  25. Salem MM, Panina LV, Trukhanova EL, Darwish MA, Morchenko AT, Zubar TI, Trukhanov AV (2019) Structural, electric and magnetic properties of (BaFe11.9Al0.1O19)1x-(BaTiO3)x composites. Compos Part B Eng 174:107054

    Article  CAS  Google Scholar 

  26. Samsudin MFR, Sufian S, Bashiri R, Mohamed NM, Ramli RM (2017) Synergistic effects of pH and calcination temperature on enhancing photodegradation performance of m-BiVO4. J Taiwan Inst Chem Eng 81:305–315

    Article  CAS  Google Scholar 

  27. Yu J, Kudo A (2006) Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv Func Mater 16(16):2163–2169

    Article  CAS  Google Scholar 

  28. Li FB, Li XZ, Cheah KW (2005) Photocatalytic activity of neodymium ion doped TiO2 for 2-mercaptobenzothiazole degradation under visible light irradiation. Environ Chem 2(2):130–137

    Article  CAS  Google Scholar 

  29. Meng Q, Lv H, Yuan M, Chen Z, Chen Z, Wang X (2017) In situ hydrothermal construction of direct solid-state nano-Z-scheme BiVO4/pyridine-doped g-C3N4 photocatalyst with efficient visible-light-induced photocatalytic degradation of phenol and dyes. ACS Omega 2(6):2728–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jeevanantham V, Tamilselvi D, Rathidevi K, Bavaji SR (2023) Greener microwave synthesized Se nanospheres for antioxidant, cell viability, and antibacterial effect. J Mater Res 38:1909–1918. https://doi.org/10.1557/s43578-023-00965-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Jeevanantham V, Tamilselvi D, Bavaji SR, Mohan S (2023) Green formulation of gold nanoparticles and their antioxidative assays, antimicrobial activity and photocatalytic colour decay. Bull Mater Sci 46(1):32

    Article  CAS  Google Scholar 

  32. Panneerselvam A, Velayutham J, Ramasamy S (2021) Green synthesis of TiO2 nanoparticles prepared from Phyllanthus niruri leaf extract for dye adsorption and their isotherm and kinetic studies. IET Nanobiotechnol 15(2):164–172

    Article  PubMed  PubMed Central  Google Scholar 

  33. Manojkumar MS, Jeyajothi K, Jagadeesan A, Jeevanantham V (2022) Magnetic separation of green synthesized Fe3O4 nanoparticles on photocatalytic activity of methyl orange dye removal. J Indian Chem Soc 99(8):100559

    Article  Google Scholar 

  34. Gopinatha P, Suresh P, Jeevanantham V (2023) Mechanical, structural and optical properties of pristine and PVA capped zinc oxide nanocomposites. J Ovonic Res, 19(1)

  35. Alothman ZA, Bahkali AH, Khiyami MA, Alfadul SM, Wabaidur SM, Alam M, Alfarhan BZ (2020) Low cost biosorbents from fungi for heavy metals removal from wastewater. Sep Sci Technol 55(10):1766–1775

    Article  CAS  Google Scholar 

  36. Liu H, Zhai H, Hu C, Yang J, Liu Z (2017) Hydrothermal synthesis of In2O3 nanoparticles hybrid twins hexagonal disk ZnO heterostructures for enhanced photocatalytic activities and stability. Nanoscale Res Lett 12:1–10

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  37. Habibi MH, Askari E (2011) The effect of operational parameters on the photocatalytic degradation of CI reactive yellow 86 textile dye using manganese zinc oxide nanocomposite thin films. J Adv Oxid Technol 14(2):190–195

    CAS  Google Scholar 

  38. Li Z, Zhang P, Shao T, Wang J, ** L, Li X (2013) Different nanostructured In2O3 for photocatalytic decomposition of perfluorooctanoic acid (PFOA). J Hazard Mater 260:40–46

    Article  CAS  PubMed  Google Scholar 

  39. Anand K, Thangaraj R, Kumar P, Kaur J, Singh RC (2015) Synthesis, characterization, photocatalytic activity and ethanol-sensing properties of In2O3 and Eu3+: In2O3 nanoparticles. In AIP Conference proceedings, vol 1661, no. 1. AIP Publishing.

  40. Jabeen S, Iqbal J, Arshad A, Awan MS, Warsi MF (2020) (In1xFex)2O3 nanostructures for photocatalytic degradation of various dyes. Mater Chem Phys 243:122516

    Article  CAS  Google Scholar 

  41. Shi W, Yan Y, Yan X (2013) Microwave-assisted synthesis of nano-scale BiVO4 photocatalysts and their excellent visible-light-driven photocatalytic activity for the degradation of ciprofloxacin. Chem Eng J 215:740–746

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Rameshkumar.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthi, N., Rameshkumar, K.A. & Maadeswaran, P. Photocatalytic performance of pristine and cobalt loaded BiVO4 nanocomposites for effective degradation of p-nitrophenol organic pollutants. Nanotechnol. Environ. Eng. 9, 17–28 (2024). https://doi.org/10.1007/s41204-023-00337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-023-00337-6

Keywords

Navigation