Log in

Construction of Ag3PO4–TiO2 nano-heterostructure with excellent visible-light-driven photocatalytic activity for environmental applications

  • Original Paper
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Nano-heterostructure constructed from Ag3PO4 and TiO2 has been successfully fabricated by the hydrothermal method with 2–10% of Ag3PO4 (X-AT). All the material properties have been investigated using XRD, HR-TEM, FEG-SEM, UV–Vis (DRS), BET surface area, XPS, and PL spectroscopy. The optoelectronic and structural properties have been correlated with materials photocatalytic performance with visible light illumination. XRD implies the formation of anatase and cubic phases of TiO2 and Ag3PO4 nanoparticles, respectively, with average crystallite size in the range of 18–25 nm. The formation of a proper heterojunction is corroborated by HR-TEM image. The addition of Ag3PO4 decreases the band gap from 3.2 for TiO2 to 2.56 eV for 10-AT heterojunction. The photocatalytic reduction of Cr(VI) and deterioration of basic fuchsin were evaluated for the Ag3PO4–TiO2 nano-heterojunction. 50 ppm of Cr(VI) solution is completely reduced into Cr(III) within 75 min of visible light irradiation using 10-AT, whereas the same material takes 120 min for the complete degradation of 10 ppm of basic fuchsin dye solution. Bare TiO2 and Ag3PO4 show insignificant photocatalytic efficiency under similar conditions. The improvement can be attributed to the synergistic effect of diminished charge carrier recombination and increased visible light absorption due to the surface plasmon resonance of the metallic silver nanoparticle and oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shanker U, Rani M, Jassal V (2017) Degradation of hazardous organic dyes in water by nanomaterials. Environ Chem Lett 15:623–642. https://doi.org/10.1007/s10311-017-0650-22

    Article  Google Scholar 

  2. Enniya I, Rghioui L, Jourani A (2018) Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustain Chem Pharm 7(9–167):9–16. https://doi.org/10.1016/j.scp.2017.11.003

    Article  Google Scholar 

  3. Silveira E, Marques PP, Silva SS, Lima-Filho JL, Porto ALF, Tambourgi EB (2009) Selection of Pseudomonas for industrial textile dyes decolourization. Int Biodeterior Biodegrad 63:230–235. https://doi.org/10.1016/j.ibiod.2008.09.007

    Article  Google Scholar 

  4. Taamallah A, Merouani S, Hamdaoui O (2016) Sonochemical degradation of basic fuchsin in water. Desalin Water Treat 57:27314–27330. https://doi.org/10.1080/19443994.2016.1168320

    Article  Google Scholar 

  5. El Haddad M (2016) Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: equilibrium, kinetics, and thermodynamics. J Taibah Univ Sci 10:664–674. https://doi.org/10.1016/j.jtusci.2015.08.007

    Article  Google Scholar 

  6. Long Y, Li Q, Ni J, Xu F, Xu H (2015) Treatment of metal wastewater in pilot-Scale packed bed systems: Efficiency of single- vs. Mixed-Mushrooms. RSC Adv 5:29145–29152. https://doi.org/10.1039/c5ra02409a

    Article  Google Scholar 

  7. Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2011) Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J Hazard Mater 190:381–390. https://doi.org/10.1016/j.jhazmat.2011.03.062

    Article  Google Scholar 

  8. Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64:1782–1806. https://doi.org/10.1080/00958972.2011.583646

    Article  Google Scholar 

  9. Hosseini SA, Talebipour S, Neyestani MR, Ranjan S, Dasgupta N (2018) Graphene oxide MgFe2O4 nanocomposites for Cr(VI) remediation: a comparative modeling study. Nanotechnol Environ Eng 3:10. https://doi.org/10.1007/s41204-018-0039-x

    Article  Google Scholar 

  10. Wani R, Kodam KM, Gawai KR, Dhakephalkar PK (2007) Chromate reduction by Burkholderia cepacia MCMB-821, isolated from the pristine habitat of alkaline crater lake. Appl Microbiol Biotechnol 75:627–632. https://doi.org/10.1007/s00253-007-0862-7

    Article  Google Scholar 

  11. Guo X, Fei GT, Su H, de Zhang L (2011) High-performance and reproducible polyaniline nanowire/tubes for removal of Cr(VI) in aqueous solution. J Phys Chem C 115:1608–1613. https://doi.org/10.1021/jp1091653

    Article  Google Scholar 

  12. Wang CC, Du XD, Li J, Guo XX, Wang P, Zhang J (2016) Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review. Appl Catal B Environ 193:198–216. https://doi.org/10.1016/j.apcatb.2016.04.030

    Article  Google Scholar 

  13. Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145–155. https://doi.org/10.1007/s10311-018-0785-9

    Article  Google Scholar 

  14. Singh J, Kalamdhad AS, Koduru JR (2017) Potential degradation of hazardous dye Congo red by nano-metallic particles synthesized from the automobile shredder residue. Nanotechnol Environ Eng 2:10. https://doi.org/10.1007/s41204-017-0021-z

    Article  Google Scholar 

  15. Dong H, **ao M, Li J, Hu W, Sun X, Liu Y, Zhang P, Che G, Liu C (2020) Construction of H-TiO2/BiOCl heterojunction with improved photocatalytic activity under the visible and near-infrared light. J Photochem Photobiol A 392:112369. https://doi.org/10.1016/j.jphotochem.2020.112369

    Article  Google Scholar 

  16. Naciri Y, Chennah A, Jaramillo-Páez C, Navío JA, Bakiz B, Taoufyq A, Ezahri M, Villain S, Guinneton F, Benlhachemi A (2019) Preparation, characterization and photocatalytic degradation of Rhodamine B dye over a novel Zn3(PO4)2 /BiPO4 catalyst. J Environ Chem Eng 7:103075. https://doi.org/10.1016/j.jece.2019.103075

    Article  Google Scholar 

  17. Kumar A, Raizada P, Hosseini-Bandegharaei A, Thakur VK, Nguyen VH, Singh P (2021) C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: Viewpoints and challenges. J Mater Chem A 9:111–153. https://doi.org/10.1039/D0TA08384D

    Article  Google Scholar 

  18. Sonu DV, Sharma S, Raizada P, Hosseini-Bandegharaei A, Kumar Gupta V, Singh P (2019) Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J Saudi Chem Soc 23:1119–1136. https://doi.org/10.1016/j.jscs.2019.07.003

    Article  Google Scholar 

  19. Abou-Gamra ZM, Ahmed MA, Hamza MA (2017) Investigation of commercial PbCrO4/TiO2 for photodegradation of rhodamine B in aqueous solution by visible light. Nanotechnol Environ Eng 2:12. https://doi.org/10.1007/s41204-017-0024-9

    Article  Google Scholar 

  20. Gasmalla HB, Lu X, Shinger MI, Ni L, Chishti AN, Diao G (2019) Novel magnetically separable of Fe3O4 /Ag3PO4@WO3 nanocomposites for enhanced photocatalytic and antibacterial activity against Staphylococcus aureus (S. aureus). J Nanobiotechnol 17:58. https://doi.org/10.1186/s12951-019-0485-z

    Article  Google Scholar 

  21. Asadzadeh-Khaneghah S, Habibi-Yangjeh A (2020) g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: a review. J Clean Prod 276:124319. https://doi.org/10.1016/j.jclepro.2020.124319

    Article  Google Scholar 

  22. Abbasi-Asl H, Sabzehmeidani MM, Ghaedi M (2021) Efficient degradation of metronidazole antibiotic by TiO2/Ag3PO4/g–C3N4 ternary composite photocatalyst in a continuous flow-loop photoreactor. J Environ Chem Eng 9:105963. https://doi.org/10.1016/j.jece.2021.105963

    Article  Google Scholar 

  23. Hashem EH, Fahmy A, Abbas A, Tarek M, Mahran B, Ahmed MA (2020) Fabrication of novel AgIO4/TiO2 heterojunction for photocatalytic hydrogen production through direct Z-scheme mechanism. Nanotechnol Environ Eng 5:17. https://doi.org/10.1007/s41204-020-00081-1

    Article  Google Scholar 

  24. Faisal M, Ismail AA, Harraz FA, Al-Sayari SA, El-Toni AM, Al-Salami AE, Al-Assiri MS (2018) Fabrication of highly efficient TiO2/C3N4 visible light driven photocatalysts with enhanced photocatalytic activity. J Mol Struct 1173:428–438. https://doi.org/10.1016/j.molstruc.2018.07.014

    Article  Google Scholar 

  25. Abbad S, Guergouri K, Gazaout S, Djebabra S, Zertal A, Barille R, Zaabat M (2020) Effect of silver do** on the photocatalytic activity of TiO2 nanopowders synthesized by the sol-gel route. J Environ Chem Eng 8:103718. https://doi.org/10.1016/j.jece.2020.103718

    Article  Google Scholar 

  26. Xu JW, da Gao Z, Han K, Liu Y, Song YY (2014) Synthesis of magnetically separable Ag3PO4/TiO2/Fe3O4heterostructure with enhanced photocatalytic performance under visible light for photoinactivation of bacteria. ACS Appl Mater Interfaces 6:15122–15131. https://doi.org/10.1021/am5032727

    Article  Google Scholar 

  27. Cui X, Yang X, **an X, Tian L, Tang H, Liu Q (2018) Insights into highly improved solar-driven photocatalytic oxygen evolution over integrated Ag3PO4/MoS2 heterostructures. Front Chem 6:123. https://doi.org/10.3389/fchem.2018.00123

    Article  Google Scholar 

  28. Liu Y, Fang L, Lu H, Liu L, Wang H, Hu C (2012) Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visible light. Catal Commun 17:200–204. https://doi.org/10.1016/j.catcom.2011.11.001

    Article  Google Scholar 

  29. Wu C (2015) Facile room temperature synthesis of Ag@AgBr core-shell microspheres with high visible-light-driven photocatalytic performance. J Mater Res 30:677–685. https://doi.org/10.1557/jmr.2015.20

    Article  Google Scholar 

  30. Zhang D, Wang J (2017) In situ photoactivated plasmonic Ag3PO4@silver as a stable catalyst with enhanced photocatalytic activity under visible light. Mater Res 20:702–711. https://doi.org/10.1590/1980-5373-MR-2016-0800

    Article  Google Scholar 

  31. Mousavi M, Habibi-Yangjeh A, Abitorabi M (2016) Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J Colloid Interface Sci 480:218–231. https://doi.org/10.1016/j.jcis.2016.07.021

    Article  Google Scholar 

  32. Ali T, Ahmed A, Alam U, Uddin I, Tripathi P, Muneer M (2018) Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater Chem Phys 212:325–335. https://doi.org/10.1016/j.matchemphys.2018.03.052

    Article  Google Scholar 

  33. Taheri ME, Petala A, Frontistis Z, Mantzavinos D, Kondarides DI (2017) Fast photocatalytic degradation of bisphenol A by Ag3PO4/TiO2 composites under solar radiation. Catal Today 280:99–107. https://doi.org/10.1016/j.cattod.2016.05.047

    Article  Google Scholar 

  34. Sheu FJ, Cho CP, Liao YT, Yu CT (2018) Ag3PO4-TiO2-graphene oxide ternary composites with efficient photodegradation, hydrogen evolution, and antibacterial properties. Catalysts 8:57. https://doi.org/10.3390/catal8020057

    Article  Google Scholar 

  35. Ibrahim Shinger M (2015) Simulated Sunlight induced the degradation of rhodamine B over graphene oxide-based Ag3PO4@AgCl. Int J Mater Sci Appl 4:246. https://doi.org/10.11648/j.ijmsa.20150404.14

    Article  Google Scholar 

  36. Sulaeman U, Suhendar S, Diastuti H, Andreas R, Yin S (2020) Short communication: design of defect and metallic silver in silver phosphate photocatalyst using the hydroxyapatite and glucose Indones. J Chem 20:1441–1447. https://doi.org/10.22146/ijc.48647

    Article  Google Scholar 

  37. Yuan Q, Chen L, **ong M, He J, Luo SL, Au CT, Yin SF (2014) Cu2O/BiVO4 heterostructures: synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr(VI) under visible light. Chem Eng J 255:394–402. https://doi.org/10.1016/j.cej.2014.06.031

    Article  Google Scholar 

  38. Denisov N, Yoo J, Schmuki P (2014) Effect of different hole scavengers on the photoelectrochemical properties and photocatalytic hydrogen evolution performance of pristine and Pt-decorated TiO2 nanotubes. Electrochim Acta 319:61–71. https://doi.org/10.1016/j.electacta.2019.06.173

    Article  Google Scholar 

  39. Cappelletti G, Bianchi CL, Ardizzone S (2008) Nano-titania assisted photoreduction of Cr(VI). The role of the different TiO2 polymorphs. Appl Catal B 78:193–201. https://doi.org/10.1016/j.apcatb.2007.09.022

    Article  Google Scholar 

  40. Xu T, Cai Y, O’Shea KE (2007) Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2 suspensions. Environ Sci Technol 41:5471–5477. https://doi.org/10.1021/es0628349

    Article  Google Scholar 

  41. Ren J, Hu T, Gong Q, Wang Q, Sun B, Gao T, Cao P, Zhou G (2020) Spherical Bi2WO6/Bi2S3/MoS2 n-p heterojunction with excellent visible-light photocatalytic reduction Cr(VI) activity. Nanomaterials 10:1–20. https://doi.org/10.3390/nano10091813

    Article  Google Scholar 

  42. Gnanaprakasam A, Sivakumar VM, Thirumarimurugan M (2015) Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: a review. Indian J Eng Mater Sci 2015:1–16. https://doi.org/10.1155/2015/601827

    Article  Google Scholar 

  43. Subramonian W, Wu TY (2014) Effect of enhancers and inhibitors on photocatalytic sunlight treatment of methylene blue. Water Air Soil Pollut 225:1922. https://doi.org/10.1007/s11270-014-1922-0

    Article  Google Scholar 

  44. Liu E, Du Y, Bai X, Fan J, Hu X (2020) Synergistic improvement of Cr(VI) reduction and RhB degradation using RP/g-C3N4 photocatalyst under visible light irradiation. Arab J Chem 13:3836–3848. https://doi.org/10.1016/j.arabjc.2019.02.001

    Article  Google Scholar 

  45. San Keskin NO, Celebioglu A, Sarioglu OF, Ozkan AD, Uyar T, Tekinay T (2015) Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrous web. RSC Adv 5:86867–86874. https://doi.org/10.1039/c5ra15601g

    Article  Google Scholar 

Download references

Acknowledgements

DM acknowledges UGC for providing RGNF fellowship (F1-17.1/2014-15/RGNF-2014-15-SC-TAM-75425). NA acknowledges BSACIST for seed money Grant (Lr. No.1240/Dean (R)/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Aman.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6468 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magadevan, D., Lakshmi, T., Mundari, N.D.A. et al. Construction of Ag3PO4–TiO2 nano-heterostructure with excellent visible-light-driven photocatalytic activity for environmental applications. Nanotechnol. Environ. Eng. 7, 931–943 (2022). https://doi.org/10.1007/s41204-022-00261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-022-00261-1

Keywords

Navigation