Log in

Optoelectronic tuning of two-dimensional engineered nanomaterials for enhanced photothermal therapy: opportunities and challenges

  • Review Article
  • Published:
Graphene and 2D Materials Aims and scope Submit manuscript

Abstract

Distinctive optoelectronic properties of two-dimensional nanomaterials (2DNMs) offer unique opportunities in nanomedicine photothermal therapy. Highly tunable optical properties and high photothermal conversion efficiency in addition to the large surface area, biocompatibility, and versatile functionalization, make 2DNMs promising photothermal agents and potential for photothermal therapies (PTT). When exposed to near-infrared light, 2DNMs exhibit plasmonic effects and demonstrate excitonic transitions that favor the conversion of light energy into thermal energy with promising applications in PTT and multimodal therapeutics. In the pursuit of effective and versatile cancer treatment strategies, driven by the ever-growing demand for minimally invasive and targeted cancer treatment approaches, 2DNMs (e.g., graphene, transition-metal dichalcogenides, and MXenes) offer exceptional light-absorbing capabilities and highly tunable surface properties/functionalization, enabling precise control over their photothermal performance and biocompatibility. Moreover, their tunable electronic and optical properties make them versatile platforms for multimodal imaging and therapeutic applications. Despite some limitations, PTT has the potential to become a viable alternative to traditional therapies such as chemotherapy and surgery. In this review, we concisely highlight the opportunities and challenges associated with unique optical properties of 2DNMs, which may broaden our outlook on their engineered applications in nanomedicine. Moreover, the potential risks of uncontrolled heat generation and thermal damage to healthy tissues are discussed, highlighting the need for precise dosimetry and control mechanisms. In addition, issues, such as potential toxicity, stability in physiological conditions, low penetration depth, and challenges associated with large-scale production, are addressed to facilitate the successful clinical translation of 2DNMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH (2020) A review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol 27(S2):87–97

    Article  Google Scholar 

  2. Chabner BA, Roberts TG Jr (2005) Chemotherapy and the war on cancer. Nat Rev Cancer 5(1):65–72

    Article  CAS  PubMed  Google Scholar 

  3. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4):237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27

    Article  CAS  PubMed  Google Scholar 

  5. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu YL, Paz-Ares L (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389(10066):299–311

    Article  CAS  PubMed  Google Scholar 

  6. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287

    Article  CAS  PubMed  Google Scholar 

  7. Sweeney CJ, Chen YH, Carducci M, Liu G, Jarrard DF, Eisenberger M, Wong YN, Hahn N, Kohli M, Cooney MM, Dreicer R, Vogelzang NJ, Picus J, Shevrin D, Hussain M, Garcia JA, DiPaola RS (2015) Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med 373(8):737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Agliano A, Calvo A, Box C (2017) The challenge of targeting cancer stem cells to halt metastasis. Semin Cancer Biol 44:25–42

    Article  CAS  PubMed  Google Scholar 

  9. Deepak KGK, Vempati R, Nagaraju GP, Dasari VR, Nagini S, Rao DN, Malla RR (2020) Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res 153:104683

    Article  CAS  PubMed  Google Scholar 

  10. Fidler IJ, Kripke ML (2015) The challenge of targeting metastasis. Cancer Metastasis Rev 34(4):635–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Polzer B, Klein CA (2013) Metastasis awakening: the challenges of targeting minimal residual cancer. Nat Med 19(3):274–275

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Yang L, Chen Z, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58(2):97–110

    Article  PubMed  Google Scholar 

  13. Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, Jacks T, Anderson DG (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12(1):39–50

    Article  CAS  Google Scholar 

  14. Nedeljković M, Damjanović A (2019) Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells 8(9):957

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schaue D, McBride WH (2015) Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol 12(9):527–540

    Article  PubMed  PubMed Central  Google Scholar 

  16. Szuplewska A, Kulpińska D, Dybko A, Jastrzębska AM, Wojciechowski T, Rozmysłowska A, Chudy M, Grabowska-Jadach I, Ziemkowska W, Brzózka Z, Olszyna A (2019) 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Mater Sci Eng C 98:874–886

    Article  CAS  Google Scholar 

  17. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  CAS  PubMed  Google Scholar 

  18. Komarala EP, Tyagi H, Thiyagarajan S, Pradhan L, Aslam M, Bahadur D (2017) NIR absorbing Au nanoparticle decorated layered double hydroxide nanohybrids for photothermal therapy and fluorescence imaging of cancer cells. J Mater Chem B 5(21):3852–3861

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Lovell JF, Yoon J, Chen X (2020) Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 17(11):657–674

    Article  PubMed  Google Scholar 

  20. Liu Y, Bhattarai P, Dai Z, Chen X (2019) Photothermal therapy and photoacoustic imaging: via nanotheranostics in fighting cancer. Chem Soc Rev 48(7):2053–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo Z, Ouyang J, Kim NY, Shi J, Ji X (2019) Emerging two-dimensional nanomaterials for cancer therapy. ChemPhysChem 20(19):2417–2433

    Article  CAS  PubMed  Google Scholar 

  22. Liu S, Pan X, Liu H (2020) Two-dimensional nanomaterials for photothermal therapy. Angew Chem Int Ed 59(15):5890–5900

    Article  CAS  Google Scholar 

  23. Mohammadpour Z, Majidzadeh-A K (2020) Applications of two-dimensional nanomaterials in breast cancer theranostics. ACS Biomater Sci Eng 6(4):1852–1873

    Article  CAS  PubMed  Google Scholar 

  24. Murugan C, Sharma V, Murugan RK, Malaimegu G, Sundaramurthy A (2019) Two-dimensional cancer theranostic nanomaterials: synthesis, surface functionalization and applications in photothermal therapy. J Control Release 299:1–20

    Article  CAS  PubMed  Google Scholar 

  25. Yang G, Zhu C, Du D, Zhu J, Lin Y (2015) Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. Nanoscale 7(34):14217–14231

    Article  CAS  PubMed  Google Scholar 

  26. Li S, Xu S, Liang X, Xue Y, Mei J, Ma Y, Liu Y, Liu Y (2021) Nanotechnology: breaking the current treatment limits of lung cancer. Adv Healthc Mater 10(12):2100078

    Article  CAS  Google Scholar 

  27. Li Y, Ayala-Orozco C, Rauta PR, Krishnan S (2019) The application of nanotechnology in enhancing immunotherapy for cancer treatment: current effects and perspective. Nanoscale 11(37):17157–17178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Phan JH, Moffitt RA, Stokes TH, Liu J, Young AN, Nie S, Wang MD (2009) Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment. Trends Biotechnol 27(6):350–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barani M, Hosseinikhah SM, Rahdar A, Farhoudi L, Arshad R, Cucchiarini M, Pandey S (2021) Nanotechnology in bladder cancer: Diagnosis and treatment. Cancers 13(9):2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chivere VT, Kondiah PPD, Choonara YE, Pillay V (2020) Nanotechnology-based biopolymeric oral delivery platforms for advanced cancer treatment. Cancers 12(2):522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng X, Dixon H, Glen-Ravenhill H, Karaosmanoglu S, Li Q, Yan L, Chen X (2019) Smart nanotechnologies to target tumor with deep penetration depth for efficient cancer treatment and imaging. Adv Ther 2(10):1900093

    Article  Google Scholar 

  32. Qin J, Gong N, Liao Z, Zhang S, Timashev P, Huo S, Liang XJ (2021) Recent progress in mitochondria-targeting-based nanotechnology for cancer treatment. Nanoscale 13(15):7108–7118

    Article  CAS  PubMed  Google Scholar 

  33. Ashkarran AA, Lin Z, Rana J, Bumpers H, Sempere L, Mahmoudi M (2023) Impact of nanomedicine in women’s metastatic breast cancer. Small. https://doi.org/10.1002/smll.202301385

    Article  PubMed  PubMed Central  Google Scholar 

  34. Derakhshi M, Ashkarran AA, Bahari A, Bonakdar S (2018) Synergistic effect of shape-selective silver nanostructures decorating reduced graphene oxide nanoplatelets for enhanced cytotoxicity against breast cancer. Nanotechnology 29(28):285102

    Article  PubMed  Google Scholar 

  35. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651

    Article  CAS  PubMed  Google Scholar 

  36. Minko T, Rodriguez-Rodriguez L, Pozharov V (2013) Nanotechnology approaches for personalized treatment of multidrug resistant cancers. Adv Drug Deliv Rev 65(13–14):1880–1895

    Article  CAS  PubMed  Google Scholar 

  37. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, **a Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53(46):12320–12364

    Article  CAS  Google Scholar 

  38. Zhou X, Hu X, Yu J, Liu S, Shu Z, Zhang Q, Li H, Ma Y, Xu H, Zhai T (2018) 2D layered material-based van der Waals heterostructures for optoelectronics. Adv Funct Mater 28(14):1706587

    Article  Google Scholar 

  39. Frisenda R, Navarro-Moratalla E, Gant P, Pérez De Lara D, Jarillo-Herrero P, Gorbachev RV, Castellanos-Gomez A (2018) Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem Soc Rev 47(1):53–68

    Article  CAS  PubMed  Google Scholar 

  40. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH (2016) 2D materials and van der Waals heterostructures. Science 353(6298):1–12

    Article  Google Scholar 

  41. Wang X, **a F (2015) Van der Waals heterostructures: stacked 2D materials shed light. Nat Mater 14(3):264–265

    Article  CAS  PubMed  Google Scholar 

  42. Thakur A, Anasori B (2024) Accelerating 2D materials discovery. Science 383(6688):1182–1183

    Article  CAS  PubMed  Google Scholar 

  43. Zhu L, Tang J, Li B, Hou T, Zhu Y, Zhou J, Wang Z, Zhu X, Yao Z, Cui X, Watanabe K, Taniguchi T, Li Y, Han ZV, Zhou W, Huang Y, Liu Z, Hone JC, Hao Y (2022) Artificial neuron networks enabled identification and characterizations of 2D materials and van der Waals heterostructures. ACS Nano 16(2):2721–2729

    Article  CAS  PubMed  Google Scholar 

  44. Derakhshi M, Daemi S, Shahini P, Habibzadeh A, Mostafavi E, Ashkarran AA (2022) Two-dimensional nanomaterials beyond graphene for biomedical applications. J Funct Biomater 13(1):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Faisal SN, Iacopi F (2022) Thin-film electrodes based on two-dimensional nanomaterials for neural interfaces. ACS Appl Nano Mater 5(8):10137–10150

    Article  CAS  Google Scholar 

  46. Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42(2):530–547

    Article  CAS  PubMed  Google Scholar 

  47. Yang Y, Asiri AM, Tang Z, Du D, Lin Y (2013) Graphene based materials for biomedical applications. Mater Today 16(10):365–373

    Article  CAS  Google Scholar 

  48. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098

    Article  CAS  Google Scholar 

  49. Wyatt BC, Nemani SK, Hilmas GE, Opila EJ, Anasori B (2023) Ultra-high temperature ceramics for extreme environments. Nat Rev Mater. https://doi.org/10.1038/s41578-023-00619-0

    Article  Google Scholar 

  50. Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H (2018) Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev 118(13):6409–6455

    Article  CAS  PubMed  Google Scholar 

  51. Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117(9):6225–6331

    Article  CAS  PubMed  Google Scholar 

  52. Yin J, Wang J, Ma Y, Yu J, Zhou J, Fan Z (2021) Recent advances in the controlled synthesis and catalytic applications of two-dimensional rhodium nanomaterials. ACS Mater Lett 3(1):121–133

    Article  CAS  Google Scholar 

  53. Donskyi IS, Huang X, Wichmann N, Bawadkji O, Ahmed R, Nickl P, Herziger S, Radnik J, Achazi K, Qiao H, Adeli M (2022) Polylactide-block-polyglycerol-functionalized black phosphorous nanosheets for tumor therapy. ACS Appl Nano Mater 5(9):13417–13424

    Article  CAS  Google Scholar 

  54. Wang Y, Qiu M, Won M, Jung E, Fan T, **e N, Chi SG, Zhang H, Kim JS (2019) Emerging 2D material-based nanocarrier for cancer therapy beyond graphene. Coord Chem Rev 400:213041

    Article  CAS  Google Scholar 

  55. Rhodes D, Chae SH, Ribeiro-Palau R, Hone J (2019) Disorder in van der Waals heterostructures of 2D materials. Nat Mater 18(6):541–549

    Article  CAS  PubMed  Google Scholar 

  56. Gobbi M, Orgiu E, Samorì P (2018) When 2D materials meet molecules: opportunities and challenges of hybrid organic/inorganic van der Waals heterostructures. Adv Mater 30(18):1706103

    Article  Google Scholar 

  57. Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9(10):9451–9469

    Article  CAS  PubMed  Google Scholar 

  58. Li S, Zhang Y, Wen W, Sheng W, Wang J, Wang S, Wang J (2019) A high-sensitivity thermal analysis immunochromatographic sensor based on au nanoparticle-enhanced two-dimensional black phosphorus photothermal-sensing materials. Biosens Bioelectron 133:223–229

    Article  CAS  PubMed  Google Scholar 

  59. Liu X, Ma T, Pinna N, Zhang J (2017) Two-dimensional nanostructured materials for gas sensing. Adv Funct Mater 27(37):1702168

    Article  Google Scholar 

  60. Rohaizad N, Mayorga-Martinez CC, Fojtů M, Latiff NM, Pumera M (2021) Two-dimensional materials in biomedical, biosensing and sensing applications. Chem Soc Rev 50(1):619–657

    Article  CAS  PubMed  Google Scholar 

  61. Tyagi D, Wang H, Huang W, Hu L, Tang Y, Guo Z, Ouyang Z, Zhang H (2020) Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 12(6):3535–3559

    Article  CAS  PubMed  Google Scholar 

  62. Varghese SS, Varghese SH, Swaminathan S, Singh KK, Mittal V (2015) Two-dimensional materials for sensing: graphene and beyond. Electronics 4(3):651–687

    Article  CAS  Google Scholar 

  63. Yang T, Jiang X, Huang Y, Tian Q, Zhang L, Dai Z, Zhu H (2022) Mechanical sensors based on two-dimensional materials: sensing mechanisms, structural designs and wearable applications. iScience 25(1):103728

    Article  PubMed  PubMed Central  Google Scholar 

  64. Choi C, Lee Y, Cho KW, Koo JH, Kim DH (2019) Wearable and implantable soft bioelectronics using two-dimensional materials. Acc Chem Res 52(1):73–81

    Article  CAS  PubMed  Google Scholar 

  65. Bao C, Zhang H, Wilkie CA, Bi S, Tang XZ, Wu J, Yang J (2016) On the dispersion systems of graphene-like two-dimensional materials: from fundamental laws to engineering guidelines. Carbon 107:774–782

    Article  CAS  Google Scholar 

  66. Chen C, Huang B, Wu J (2018) Be3N2 monolayer: a graphene-like two-dimensional material and its derivative nanoribbons. AIP Adv 8(10):105105

    Article  Google Scholar 

  67. Sun Z, Chang H (2014) Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. ACS Nano 8(5):4133–4156

    Article  CAS  PubMed  Google Scholar 

  68. Yang JH, Song S, Du S, Gao HJ, Yakobson BI (2017) Design of two-dimensional graphene-like dirac materials β12-XBeB5 (X = H, F, Cl) from Non-graphene-like β12-borophene. J Phys Chem Lett 8(18):4594–4599

    Article  CAS  PubMed  Google Scholar 

  69. Song Y, Luo Y, Zhu C, Li H, Du D, Lin Y (2016) Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens Bioelectron 76:195–212

    Article  CAS  PubMed  Google Scholar 

  70. Koninti RK, Sengupta A, Gavvala K, Ballav N, Hazra P (2014) Loading of an anti-cancer drug onto graphene oxide and subsequent release to DNA/RNA: a direct optical detection. Nanoscale 6(5):2937–2944

    Article  CAS  PubMed  Google Scholar 

  71. Vilela P, El-Sagheer A, Millar TM, Brown T, Muskens OL, Kanaras AG (2017) Graphene oxide-upconversion nanoparticle based optical sensors for targeted detection of mRNA biomarkers present in Alzheimer’s disease and prostate cancer. ACS Sens 2(1):52–56

    Article  CAS  PubMed  Google Scholar 

  72. Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, Mahmoudi M (2013) Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev 113(5):3407–3424

    Article  CAS  PubMed  Google Scholar 

  73. Cassabois G, Valvin P, Gil B (2016) Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photon 10(4):262–266

    Article  CAS  Google Scholar 

  74. Dai S, Ma Q, Liu MK, Andersen T, Fei Z, Goldflam MD, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen GCAM, Zhu SE, Jarillo-Herrero P, Fogler MM, Basov DN (2015) Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotechnol 10(8):682–686

    Article  CAS  PubMed  Google Scholar 

  75. Lee GH, Yu YJ, Cui X, Petrone N, Lee CH, Choi MS, Lee DY, Lee C, Yoo WJ, Watanabe K, Taniguchi T, Nuckolls C, Kim P, Hone J (2013) Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7(9):7931–7936

    Article  CAS  PubMed  Google Scholar 

  76. Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3(6):404–409

    Article  CAS  PubMed  Google Scholar 

  77. Huang S, Ling X (2017) Black phosphorus: optical characterization, properties and applications. Small 13(38):1700823

    Article  Google Scholar 

  78. Qiu DY, Da Jornada FH, Louie SG (2017) Environmental screening effects in 2D materials: renormalization of the bandgap, electronic structure, and optical spectra of few-layer black phosphorus. Nano Lett 17(8):4706–4712

    Article  CAS  PubMed  Google Scholar 

  79. Zhang R, Zhang YX, Yu HH, Zhang HJ, Yang RL, Yang BC, Liu ZY, Wang JY (2015) Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared. Adv Opt Mater 3(12):1787–1792

    Article  CAS  Google Scholar 

  80. Jose D, Datta A (2014) Structures and chemical properties of silicene: unlike graphene. Acc Chem Res 47(2):593–602

    Article  CAS  PubMed  Google Scholar 

  81. Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J (2012) Tunable bandgap in silicene and germanene. Nano Lett 12(1):113–118

    Article  CAS  PubMed  Google Scholar 

  82. Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108(15):155501

    Article  PubMed  Google Scholar 

  83. Castelletto S, Johnson BC, Ivády V, Stavrias N, Umeda T, Gali A, Ohshima T (2014) A silicon carbide room-temperature single-photon source. Nat Mater 13(2):151–156

    Article  CAS  PubMed  Google Scholar 

  84. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8(3):203–207

    Article  CAS  PubMed  Google Scholar 

  85. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2):1102–1120

    Article  CAS  PubMed  Google Scholar 

  86. Komsa HP, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov AV (2012) Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and do**. Phys Rev Lett 109(3):035503

    Article  PubMed  Google Scholar 

  87. Lv R, Robinson JA, Schaak RE, Sun D, Sun Y, Mallouk TE, Terrones M (2015) Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc Chem Res 48(1):56–64

    Article  CAS  PubMed  Google Scholar 

  88. Blei M, Kapeghian J, Banerjee R, Kolari P, Povilus B, Attarde Y, Botana AS, Tongay S (2022) Tunable magnetic and optical properties of transition metal dihalides by cation alloying. Phys Rev Mater 6(8):084003

    Article  CAS  Google Scholar 

  89. Jiang S, Wang G, Deng H, Liu K, Yang Q, Zhao E, Zhu L, Guo W, Yang J, Zhang C, Wang H, Zhang X, Dai JF, Luo G, Zhao Y, Lin J (2023) General synthesis of 2D magnetic transition metal dihalides via trihalide reduction. ACS Nano 17(1):363–371

    Article  CAS  PubMed  Google Scholar 

  90. Anasori B, **e Y, Beidaghi M, Lu J, Hosler BC, Hultman L, Kent PRC, Gogotsi Y, Barsoum MW (2015) Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10):9507–9516

    Article  CAS  PubMed  Google Scholar 

  91. Gogotsi Y, Anasori B (2019) The rise of MXenes. ACS Nano 13(8):8491–8494

    Article  CAS  PubMed  Google Scholar 

  92. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29(18):7633–7644

    Article  CAS  Google Scholar 

  93. **a Y, Mathis TS, Zhao MQ, Anasori B, Dang A, Zhou Z, Cho H, Gogotsi Y, Yang S (2018) Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557(7705):409–412

    Article  CAS  PubMed  Google Scholar 

  94. Guo Z, **e W, Lu J, Guo X, Chi Y, Wang D, Takuya N, Xu W, Ye J, Liu X, Gu Z, Xu B, Wu H, Zhao L (2021) Ferrous ions doped layered double hydroxide: smart 2D nanotheranostic platform with imaging-guided synergistic chemo/photothermal therapy for breast cancer. Biomater Sci 9(17):5928–5938

    Article  CAS  PubMed  Google Scholar 

  95. Zhang C, Li L, Han FY, Yu X, Tan X, Fu C, Xu ZP, Whittaker AK (2019) Integrating fluorinated polymer and manganese-layered double hydroxide nanoparticles as pH-activated 19F MRI agents for specific and sensitive detection of breast cancer. Small 15(36):1902309

    Article  Google Scholar 

  96. Osanloo MR, Oyekan KA, Vandenberghe WG (2022) A first-principles study on the electronic, thermodynamic and dielectric properties of monolayer Ca(OH)2 and Mg(OH)2. Nanomaterials 12(10):1774

    Article  Google Scholar 

  97. ** H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao SZ (2018) Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev 118(13):6337–6408

    Article  CAS  PubMed  Google Scholar 

  98. Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez Casalongue H, Vinh D, Dai H (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–6831

    Article  CAS  PubMed  Google Scholar 

  99. Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z (2010) Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10(9):3318–3323

    Article  CAS  PubMed  Google Scholar 

  100. Yin W, Yan L, Yu J, Tian G, Zhou L, Zheng X, Zhang X, Yong Y, Li J, Gu Z, Zhao Y (2014) High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 8(7):6922–6933

    Article  CAS  PubMed  Google Scholar 

  101. Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H (2011) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32(33):8555–8561

    Article  CAS  PubMed  Google Scholar 

  102. Ding X, Liow CH, Zhang M, Huang R, Li C, Shen H, Liu M, Zou Y, Gao N, Zhang Z, Li Y, Wang Q, Li S, Jiang J (2014) Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J Am Chem Soc 136(44):15684–15693

    Article  CAS  PubMed  Google Scholar 

  103. Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X, Huang R (2013) Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc 135(12):4799–4804

    Article  CAS  PubMed  Google Scholar 

  104. Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z (2012) Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater 24(14):1868–1872

    Article  CAS  PubMed  Google Scholar 

  105. Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z (2012) The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33(7):2206–2214

    Article  CAS  PubMed  Google Scholar 

  106. Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5(8):497–508

    Article  CAS  PubMed  Google Scholar 

  107. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    Article  CAS  PubMed  Google Scholar 

  108. Cheng Y, Cheng H, Jiang C, Qiu X, Wang K, Huan W, Yuan A, Wu J, Hu Y (2015) Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat Commun 6:8785

    Article  CAS  PubMed  Google Scholar 

  109. Ozlem S, Akkaya EU (2009) Thinking outside the silicon box: molecular and logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy. J Am Chem Soc 131(1):48–49

    Article  CAS  PubMed  Google Scholar 

  110. Wang S, Gao R, Zhou F, Selke M (2004) Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. J Mater Chem 14:487–493

    Article  CAS  Google Scholar 

  111. An D, Fu J, Zhang B, **e N, Nie G, Ågren H, Qiu M, Zhang H (2021) NIR-II responsive inorganic 2D nanomaterials for cancer photothermal therapy: recent advances and future challenges. Adv Funct Mater 31(32):2101625

    Article  CAS  Google Scholar 

  112. Bastiancich C, Da Silva A, Estève MA (2021) Photothermal therapy for the treatment of glioblastoma: potential and preclinical challenges. Front Oncol 10:610356

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, Meng X, Wang P, Lee CS, Zhang W, Han X (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 5:4596

    Article  CAS  PubMed  Google Scholar 

  114. Chen Y, Wang L, Shi J (2016) Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today 11(3):292–308

    Article  CAS  Google Scholar 

  115. Lin H, Gao S, Dai C, Chen Y, Shi J (2017) A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc 139(45):16235–16247

    Article  CAS  PubMed  Google Scholar 

  116. Chang X, Wu Q, Wu Y, ** X, Cao J, Chu H, Liu Q, Li Y, Wu W, Fang X, Chen F (2022) Multifunctional Au modified Ti3C2–MXene for photothermal/enzyme dynamic/immune synergistic therapy. Nano Lett 22(20):8321–8330

    Article  CAS  PubMed  Google Scholar 

  117. Han X, Huang J, Lin H, Wang Z, Li P, Chen Y (2018) 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv Healthc Mater 7(9):1701394

    Article  Google Scholar 

  118. He PP, Du X, Cheng Y, Gao Q, Liu C, Wang X, Wei Y, Yu Q, Guo W (2022) Thermal-responsive MXene-DNA hydrogel for near-infrared light triggered localized photothermal-chemo synergistic cancer therapy. Small 18(40):2200263

    Article  CAS  Google Scholar 

  119. Lin H, Wang X, Yu L, Chen Y, Shi J (2017) Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett 17(1):384–391

    Article  CAS  PubMed  Google Scholar 

  120. Bernardi M, Ataca C, Palummo M, Grossman JC (2017) Optical and electronic properties of two-dimensional layered materials. Nanophotonics 6(2):479–493

    Article  Google Scholar 

  121. Liu G, Zou J, Tang Q, Yang X, Zhang Y, Zhang Q, Huang W, Chen P, Shao J, Dong X (2017) Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl Mater Interfaces 9(46):40077–40086

    Article  CAS  PubMed  Google Scholar 

  122. Wang J, Sun L, Liu J, Sun B, Li L, Xu ZP (2021) Biomimetic 2D layered double hydroxide nanocomposites for hyperthermia-facilitated homologous targeting cancer photo-chemotherapy. J Nanobiotechnol 19(1):351

    Article  CAS  Google Scholar 

  123. Yang L, Kim TH, Cho HY, Luo J, Lee JM, Chueng SD, Hou Y, Yin PT, Han J, Kim JH, Chung BG, Choi JW, Lee KB (2020) Hybrid graphene-gold nanoparticle-based nucleic acid conjugates for cancer-specific multimodal imaging and combined therapeutics. Adv Funct Mater 31(5):2006918

    Article  PubMed  PubMed Central  Google Scholar 

  124. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4):2898–2926

    Article  CAS  PubMed  Google Scholar 

  125. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017):568–571

    Article  CAS  PubMed  Google Scholar 

  126. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26(7):992–1005

    Article  CAS  PubMed  Google Scholar 

  127. Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113(5):3766–3798

    Article  CAS  PubMed  Google Scholar 

  128. Yadav A, Kumar H, Sharma R, Kumari R (2023) Synthesis, processing, and applications of 2D (nano)materials: a sustainable approach. Surf Interfaces 39:102925

    Article  CAS  Google Scholar 

  129. Feng Z, Hu G, Zhu R, Zhang S, Liu C, Guan P, Li M, Wan T, Xu H, Chu D (2022) Two-dimensional nanomaterials for moisture-electric generators: a review. ACS Appl Nano Mater 5(9):12224–12244

    Article  CAS  Google Scholar 

  130. Zheng W, Lee LYS (2022) Beyond sonication: advanced exfoliation methods for scalable production of 2D materials. Matter 5(2):515–545

    Article  CAS  Google Scholar 

  131. Thakur A, Chandran BSN, Davidson K, Bedford A, Fang H, Im Y, Kanduri V, Wyatt BC, Nemani SK, Poliukhova V, Kumar R, Fakhraai Z, Anasori B (2023) Step-by-step guide for synthesis and delamination of Ti3C2Tx MXene. Small Methods 7(8):2300030

    Article  CAS  Google Scholar 

  132. Niu L, Coleman JN, Zhang H, Shin H, Chhowalla M, Zheng Z (2016) Production of two-dimensional nanomaterials via liquid-based direct exfoliation. Small 12(3):272–293

    Article  CAS  PubMed  Google Scholar 

  133. Seidi F, Arabi Shamsabadi A, Dadashi Firouzjaei M, Elliott M, Saeb MR, Huang Y, Li C, **ao H, Anasori B (2023) MXenes antibacterial properties and applications: a review and perspective. Small 19(14):2206716

    Article  CAS  Google Scholar 

  134. Mujib SB, Ren Z, Mukherjee S, Soares DM, Singh G (2020) Design, characterization, and application of elemental 2D materials for electrochemical energy storage, sensing, and catalysis. Mater Adv 1(8):2562–2591

    Article  Google Scholar 

  135. Choi SH, Yun SJ, Won YS, Oh CS, Kim SM, Kim KK, Lee YH (2022) Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat Commun 13(1):1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kurapati R, Kostarelos K, Prato M, Bianco A (2016) Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Adv Mater 28(29):6052–6074

    Article  CAS  PubMed  Google Scholar 

  137. Shanmugam V, Selvakumar S, Yeh C-S (2014) Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 43(17):6254–6287

    Article  CAS  PubMed  Google Scholar 

  138. Kim KK, Hsu A, Jia X, Kim SM, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva JF, Dresselhaus M, Palacios T, Kong J (2012) Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett 12(1):161–166

    Article  PubMed  Google Scholar 

  139. Shi Y, Hamsen C, Jia X, Kim KK, Reina A, Hofmann M, Hsu AL, Zhang K, Li H, Juang ZY, Dresselhaus MS, Li LJ, Kong J (2010) Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett 10(10):4134–4139

    Article  CAS  PubMed  Google Scholar 

  140. Wan J, Lacey SD, Dai J, Bao W, Fuhrer MS, Hu L (2016) Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem Soc Rev 45(24):6742–6765

    Article  CAS  PubMed  Google Scholar 

  141. Chen Y, Tan C, Zhang H, Wang L (2015) Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev 44(9):2681–2701

    Article  CAS  PubMed  Google Scholar 

  142. Chimene D, Alge DL, Gaharwar AK (2015) Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv Mater 27(45):7261–7284

    Article  CAS  PubMed  Google Scholar 

  143. Rosenkranz A, Righi MC, Sumant AV, Anasori B, Mochalin VN (2023) Perspectives of 2D MXene tribology. Adv Mater 35(5):2207757

    Article  CAS  Google Scholar 

  144. He XT, Luo YH, Hong DL, Chen FH, Zheng ZY, Wang C, Wang JY, Chen C, Sun BW (2019) Atomically thin nanoribbons by exfoliation of hydrogen-bonded organic frameworks for drug delivery. ACS Appl Nano Mater 2(4):2437–2445

    Article  CAS  Google Scholar 

  145. Wang L, Xu SM, Yang X, He S, Guan S, Waterhouse GIN, Zhou S (2020) Exploiting Co defects in CoFe-layered double hydroxide (CoFe-LDH) derivatives for highly efficient photothermal cancer therapy. ACS Appl Mater Interfaces 12(49):54916–54926

    Article  CAS  PubMed  Google Scholar 

  146. Tan C, Zhang H (2015) Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat Commun 6:7873

    Article  CAS  PubMed  Google Scholar 

  147. Zhuang X, Mai Y, Wu D, Zhang F, Feng X (2015) Two-dimensional soft nanomaterials: a fascinating world of materials. Adv Mater 27(3):403–427

    Article  CAS  PubMed  Google Scholar 

  148. Weng Q, Wang X, Wang X, Bando Y, Golberg D (2016) Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem Soc Rev 45(14):3989–4012

    Article  CAS  PubMed  Google Scholar 

  149. Wang Z, Li H, She W, Zhang X, Liu Y, Liu Y, Jiang P (2023) 3-Bromopyruvate-loaded Ti3C2 MXene/Cu2O nanosheets for photoacoustic imaging-guided and hypoxia-relieving enhanced photothermal/chemodynamic therapy. Anal Chem 95(2):1710–1720

    CAS  PubMed  Google Scholar 

  150. Kazempour M, Namazi H, Akbarzadeh A, Kabiri R (2019) Synthesis and characterization of PEG-functionalized graphene oxide as an effective pH-sensitive drug carrier. Artif Cells Nanomed Biotechnol 47(1):90–94

    Article  CAS  PubMed  Google Scholar 

  151. Xu Z, Wang S, Li Y, Wang M, Shi P, Huang X (2014) Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Appl Mater Interfaces 6(19):17268–17276

    Article  CAS  PubMed  Google Scholar 

  152. Hu D, Zhang J, Gao G, Sheng Z, Cui H, Cai L (2016) Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics. Theranostics 6(7):1043–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wu C, Wang S, Zhao J, Liu Y, Zheng Y, Luo Y, Ye C, Huang M, Chen H (2019) Biodegradable Fe(III)@WS2-PVP nanocapsules for redox reaction and TME-enhanced nanocatalytic, photothermal, and chemotherapy. Adv Funct Mater 29(26):1901722

    Article  Google Scholar 

  154. Zhu J, Xu M, Gao M, Zhang Z, Xu Y, **a T, Liu S (2017) Graphene oxide induced perturbation to plasma membrane and cytoskeletal meshwork sensitize cancer cells to chemotherapeutic agents. ACS Nano 11(3):2637–2651

    Article  CAS  PubMed  Google Scholar 

  155. Akhavan O, Ghaderi E (2013) Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 9(21):3593–3601

    Article  CAS  PubMed  Google Scholar 

  156. Dai C, Chen Y, **g X, **ang L, Yang D, Lin H, Liu Z, Han X, Wu R (2017) Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano 11(12):12696–12712

    Article  CAS  PubMed  Google Scholar 

  157. Zhang D-Y, Zheng Y, Tan C-P, Sun J-H, Zhang W, Ji L-N, Mao Z-W (2017) Graphene oxide decorated with Ru(II)–polyethylene glycol complex for lysosome-targeted imaging and photodynamic/photothermal therapy. ACS Appl Mater Interfaces 9(8):6761–6771

    Article  CAS  PubMed  Google Scholar 

  158. **e Z, Chen S, Duo Y, Zhu Y, Fan T, Zou Q, Qu M, Lin Z, Zhao J, Li Y, Liu L, Bao S, Chen H, Fan D, Zhang H (2019) Biocompatible two-dimensional titanium nanosheets for multimodal imaging-guided cancer theranostics. ACS Appl Mater Interfaces 11:22129–22140

    Article  CAS  PubMed  Google Scholar 

  159. Pan J, Zhang M, Fu G, Zhang L, Yu H, Yan X, Liu F, Sun P, Jia X, Liu X, Lu G (2022) Ti3C2MXene nanosheets functionalized with a ErF4:0.5%Tm@NaLuF4 nanoparticles for dual-modal near-infrared IIb/magnetic resonance imaging-guided tumor hyperthermia. ACS Appl Nano Mater 5(6):8142–8153

    Article  CAS  Google Scholar 

  160. Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2(12):1015–1024

    Article  CAS  PubMed  Google Scholar 

  161. Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen YR (2008) Gate-variable optical transitions in graphene. Science 320(5873):206–209

    Article  CAS  PubMed  Google Scholar 

  162. Low T, Rodin AS, Carvalho A, Jiang Y, Wang H, **a F, Castro Neto AH (2014) Tunable optical properties of multilayer black phosphorus thin films. Phys Rev B Condens Matter Mater Phys 90(7):075434

    Article  CAS  Google Scholar 

  163. Mao N, Tang J, **e L, Wu J, Han B, Lin J, Deng S, Ji W, Xu H, Liu K, Tong L, Zhang J (2016) Optical anisotropy of black phosphorus in the visible regime. J Am Chem Soc 138(1):300–305

    Article  CAS  PubMed  Google Scholar 

  164. Wang Y, Slassi A, Cornil J, Beljonne D, Samorì P (2019) Tuning the optical and electrical properties of few-layer black phosphorus via physisorption of small solvent molecules. Small 53:3841–3849

    CAS  Google Scholar 

  165. Exarhos AL, Hopper DA, Grote RR, Alkauskas A, Bassett LC (2017) Optical signatures of quantum emitters in suspended hexagonal boron nitride. ACS Nano 11(3):3328–3336

    Article  CAS  PubMed  Google Scholar 

  166. Tran TT, Bray K, Ford MJ, Toth M, Aharonovich I (2016) Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol 11(1):37–41

    Article  CAS  PubMed  Google Scholar 

  167. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712

    Article  CAS  PubMed  Google Scholar 

  168. Zhang X, Qiao XF, Shi W, Wu JB, Jiang DS, Tan PH (2015) Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem Soc Rev 44(9):2757–2785

    Article  CAS  PubMed  Google Scholar 

  169. Hiremath N, Kumar R, Hwang KC, Banerjee I, Thangudu S, Vankayala R (2022) Near-infrared light activatable two-dimensional nanomaterials for theranostic applications: a comprehensive review. ACS Appl Nano Mater 5(2):1719–1733

    Article  CAS  Google Scholar 

  170. Bao C, Tang P, Sun D, Zhou S (2022) Light-induced emergent phenomena in 2D materials and topological materials. Nat Rev Phys 4(1):33–48

    Article  Google Scholar 

  171. **ng C, Chen S, Liang X, Liu Q, Qu M, Zou Q, Li J, Tan H, Liu L, Fan D, Zhang H (2018) Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl Mater Interfaces 10(33):27631–27643

    Article  CAS  PubMed  Google Scholar 

  172. Rezapour MR, Myung CW, Yun J, Ghassami A, Li N, Yu SU, Hajibabaei A, Park Y, Kim KS (2017) Graphene and graphene analogs toward optical, electronic, spintronic, green-chemical, energy-material, sensing, and medical applications. ACS Appl Mater Interfaces 9(29):24393–24406

    Article  CAS  PubMed  Google Scholar 

  173. Kaul AB, Coles JB, Eastwood M, Green RO, Bandaru PR (2013) Ultra-high optical absorption efficiency from the ultraviolet to the infrared using multi-walled carbon nanotube ensembles. Small 9(7):1058–1065

    Article  CAS  PubMed  Google Scholar 

  174. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308

    Article  CAS  PubMed  Google Scholar 

  175. Castellanos-Gomez A, Vicarelli L, Prada E, Island JO, Narasimha-Acharya KL, Blanter SI, Groenendijk DJ, Buscema M, Steele GA, Alvarez JV, Zandbergen HW, Palacios JJ, Van Der Zant HSJ (2014) Isolation and characterization of few-layer black phosphorus. 2D Mater 1(2):025001

    Article  CAS  Google Scholar 

  176. Li Q, Lu J, Gupta P, Qiu M (2019) Engineering optical absorption in graphene and other 2D materials: advances and applications. Adv Opt Mater 7(20):1900595

    Article  CAS  Google Scholar 

  177. Ma Q, Ren G, Xu K, Ou JZ (2021) Tunable optical properties of 2D materials and their applications. Adv Opt Mater 9(2):2001313

    Article  CAS  Google Scholar 

  178. Wild A, Mariani E, Portnoi ME (2022) Optical absorption in two-dimensional materials with tilted Dirac cones. Phys Rev B 105(20):205306

    Article  CAS  Google Scholar 

  179. Sun X, Shi L, Huang H, Song X, Ma T (2020) Surface engineered 2D materials for photocatalysis. Chem Commun 56(75):11000–11013

    Article  CAS  Google Scholar 

  180. Min J, Zhao C, Zeng Z, Jia Y, Du Z (2019) Tunable visible-light excitonic absorption and high photoconversion efficiency in two-dimensional group-VI monolayer materials. Phys Rev B 100(8):085402

    Article  CAS  Google Scholar 

  181. Fu C, Tan L, Ren X, Wu Q, Shao H, Ren J, Zhao Y, Meng X (2018) Interlayer expansion of 2D MoS2 nanosheets for highly improved photothermal therapy of tumors in vitro and in vivo. Chem Commun 54(99):13989–13992

    Article  CAS  Google Scholar 

  182. Yuan Y, Peng X, Weng X, He J, Liao C, Wang Y, Liu L, Zeng S, Song J, Qu J (2023) Two-dimensional nanomaterials as enhanced surface plasmon resonance sensing platforms: design perspectives and illustrative applications. Biosens Bioelectron 241:115672

    Article  CAS  PubMed  Google Scholar 

  183. Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review. Anal Chim Acta 706(1):8–24

    Article  CAS  PubMed  Google Scholar 

  184. Xu Y, Hsieh CY, Wu L, Ang LK (2019) Two-dimensional transition metal dichalcogenides mediated long range surface plasmon resonance biosensors. J Phys D Appl Phys 52(6):065101

    Article  Google Scholar 

  185. Lalisse A, Tessier G, Plain J, Baffou G (2015) Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J Phys Chem C 119(45):25518–25528

    Article  CAS  Google Scholar 

  186. Nakagawa K, Shimura Y, Fukazawa Y, Nishizaki R, Matano S, Oya S, Maki H (2022) Microemitter-based IR spectroscopy and imaging with multilayer graphene thermal emission. Nano Lett 22(8):3236–3244

    Article  CAS  PubMed  Google Scholar 

  187. Li J, Majety S, Dahal R, Zhao WP, Lin JY, Jiang HX (2012) Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers. Appl Phys Lett 101(17):171112

    Article  Google Scholar 

  188. Huang R, Li J, Wu Z, Yang W, Huang W, Li C, Chen S (2018) Universal absorption of two-dimensional materials within k ⋅ p method. Phys Lett A 382(41):3035–3041

    Article  CAS  Google Scholar 

  189. Castellanos-Gomez A, Quereda J, Van Der Meulen HP, Agraït N, Rubio-Bollinger G (2016) Spatially resolved optical absorption spectroscopy of single- and few-layer MoS2 by hyperspectral imaging. Nanotechnology 27(11):115705

    Article  PubMed  Google Scholar 

  190. Chen X, Shi Z, Tian Y, Lin P, Wu D, Li X, Dong B, Xu W, Fang X (2021) Two-dimensional Ti3C2MXene-based nanostructures for emerging optoelectronic applications. Mater Horiz 8(11):2929–2963

    Article  CAS  PubMed  Google Scholar 

  191. Lin H, Wang Y, Gao S, Chen Y, Shi J (2018) Theranostic 2D tantalum carbide (MXene). Adv Mater 30(4):1703284

    Article  Google Scholar 

  192. Li X, Yin X, Xu H, Han M, Li M, Liang S, Cheng L, Zhang L (2018) Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band. ACS Appl Mater Interfaces 10(40):34524–34533

    Article  CAS  PubMed  Google Scholar 

  193. Tsai DS, Liu KK, Lien DH, Tsai ML, Kang CF, Lin CA, Li LJ, He JH (2013) Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 7(5):3905–3911

    Article  CAS  PubMed  Google Scholar 

  194. Brongersma ML, Halas NJ, Nordlander P (2015) Plasmon-induced hot carrier science and technology. Nat Nanotechnol 10(1):25–34

    Article  CAS  PubMed  Google Scholar 

  195. Cao Y, Dou J-H, Zhao N-J, Zhang S, Zheng Y-Q, Zhang J-P, Wang J-Y, Pei J, Wang Y (2017) Highly efficient NIR-II photothermal conversion based on an organic conjugated polymer. Chem Mater 29(2):718–725

    Article  CAS  Google Scholar 

  196. He Y, Cao Y, Wang Y (2018) Progress on photothermal conversion in the second NIR window based on conjugated polymers. Asian J Org Chem 7(11):2201–2212

    Article  CAS  Google Scholar 

  197. Shen W, Hu T, Liu X, Zha J, Meng F, Wu Z, Cui Z, Yang Y, Li H, Zhang Q, Gu L, Liang R, Tan C (2022) Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy. Nat Commun 13(1):3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Breitenborn H, Dong J, Piccoli R, Bruhacs A, Besteiro LV, Skripka A, Wang ZM, Govorov AO, Razzari L, Vetrone F, Naccache R, Morandotti R (2019) Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation. APL Photon 4(12):126106

    Article  Google Scholar 

  199. Chen X, Li C, Wang X, Zhao X (2019) Infrared heating of reduced graphene oxide nanosheets as photothermal radiation therapeutic agents for tumor regressions. Mater Res Express 6(8):085080

    Article  CAS  Google Scholar 

  200. Ren Q, Li B, Peng Z, He G, Zhang W, Guan G, Huang X, **ao Z, Liao L, Pan Y, Yang X, Zou R, Hu J (2016) SnS nanosheets for efficient photothermal therapy. New J Chem 40(5):4464–4467

    Article  CAS  Google Scholar 

  201. **e Z, Wang D, Fan T, **ng C, Li Z, Tao W, Liu L, Bao S, Fan D, Zhang H (2018) Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy. J Mater Chem B 6(29):4747–4755

    Article  CAS  PubMed  Google Scholar 

  202. Wang L, Guan S, Weng Y, Xu S-M, Lu H, Meng X, Zhou S (2019) Highly efficient vacancy-driven photothermal therapy mediated by ultrathin MnO2 nanosheets. ACS Appl Mater Interfaces 11(6):6267–6275

    Article  CAS  PubMed  Google Scholar 

  203. Salimi M, Shokrgozar MA, Hamid DH, Vossoughi M (2022) Photothermal properties of two-dimensional molybdenum disulfide (MoS2) with nanoflower and nanosheet morphology. Mater Res Bull 152:111837

    Article  CAS  Google Scholar 

  204. Shao J, **e H, Wang H, Zhou W, Luo Q, Yu XF, Chu PK (2018) 2D material-based nanofibrous membrane for photothermal cancer therapy. ACS Appl Mater Interfaces 10(1):1155–1163

    Article  CAS  PubMed  Google Scholar 

  205. Derakhshi M, Ashkarran AA, Bahari A, Bonakdar S (2018) Shape selective silver nanostructures decorated amine-functionalized graphene: a promising antibacterial platform. Colloids Surf A Physicochem Eng Asp 545:101–109

    Article  CAS  Google Scholar 

  206. Ashkarran AA, Hamidinezhad H, Haddadi H, Mahmoudi M (2014) In Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light. Appl Surf Sci 301:338–345

    Article  CAS  Google Scholar 

  207. Ashkarran AA, Fakhari M, Hamidinezhad H, Haddadi H, Nourani MR (2015) TiO2 nanoparticles immobilized on carbon nanotubes for enhanced visible-light photo-induced activity. J Mater Res Technol 4(2):126–132

    Article  CAS  Google Scholar 

  208. Rani P, **dal VK (2013) Designing band gap of graphene by B and N dopant atoms. RSC Adv 3(3):802–812

    Article  CAS  Google Scholar 

  209. Chang C-K, Kataria S, Kuo C-C, Ganguly A, Wang B-Y, Hwang J-Y, Huang K-J, Yang W-H, Wang S-B, Chuang C-H, Chen M, Huang C-I, Pong W-F, Song K-J, Chang S-J, Guo J-H, Tai Y, Tsujimoto M, Isoda S, Chen C-W, Chen L-C, Chen K-H (2013) Band gap engineering of chemical vapor deposited graphene by in situ BN do**. ACS Nano 7(2):1333–1341

    Article  CAS  PubMed  Google Scholar 

  210. Chen H, Liu T, Su Z, Shang L, Wei G (2018) 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz 3(2):74–89

    Article  CAS  PubMed  Google Scholar 

  211. Gu Z, Zhu S, Yan L, Zhao F, Zhao Y (2019) Graphene-based smart platforms for combined cancer therapy. Adv Mater 31(9):1800662

    Article  Google Scholar 

  212. Ashkarran AA (2010) A novel method for synthesis of colloidal silver nanoparticles by arc discharge in liquid. Curr Appl Phys 10(6):1442–1447

    Article  Google Scholar 

  213. Ashkarran AA (2013) Seed mediated growth of gold nanoparticles based on liquid arc discharge. Plasma Sci Technol 15(4):376–381

    Article  CAS  Google Scholar 

  214. Ashkarran AA, Derakhshi M (2015) The effect of FeCl3 in the shape control polyol synthesis of silver nanospheres and nanowires. J Clust Sci 26(5):1901–1910

    Article  CAS  Google Scholar 

  215. Ashkarran AA (2016) The effect of visible-light intensity on shape evolution and antibacterial properties of triangular silver nanostructures. Opt Mater 58:454–460

    Article  CAS  Google Scholar 

  216. Ashkarran AA, Daemi S (2016) Tuning the plasmon of metallic nanostructures: from silver nanocubes toward gold nanoboxes. Plasmonics 11(4):1011–1017

    Article  CAS  Google Scholar 

  217. Ashkarran AA, Daemi S, Derakhshi M (2016) Destructive effect of solar light on morphology of colloidal silver nanocubes. Colloid J 78(5):577–585

    Article  CAS  Google Scholar 

  218. Ashkarran AA, Ghavamipour M, Hamidinezhad H, Haddadi H (2015) Enhanced visible light-induced hydrophilicity in sol–gel-derived Ag–TiO2 hybrid nanolayers. Res Chem Intermed 41(10):7299–7311

    Article  CAS  Google Scholar 

  219. Farokhnezhad M, Esmaeilzadeh M, Nourian M, Jalaeikhoo H, Rajaeinejad M, Iravani S, Majidzadeh-A K (2020) Silica-gold nanoshell@graphene: a novel class of plasmonic nanoagents for photothermal cancer therapy. J Phys D Appl Phys 53(40):405401

    Article  CAS  Google Scholar 

  220. Daemi S, Ashkarran AA, Bahari A, Ghasemi S (2017) Gold nanocages decorated biocompatible amine functionalized graphene as an efficient dopamine sensor platform. J Colloid Interface Sci 494:290–299

    Article  CAS  PubMed  Google Scholar 

  221. Daemi S, Ashkarran AA, Bahari A, Ghasemi S (2017) Fabrication of a gold nanocage/graphene nanoscale platform for electrocatalytic detection of hydrazine. Sens Actuators B Chem 245:55–65

    Article  CAS  Google Scholar 

  222. Ashkarran AA, Mohammadi B (2015) ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light. Appl Surf Sci 342:112–119

    Article  CAS  Google Scholar 

  223. Shahini P, Ashkarran AA (2017) TiO2 nanofibers assembled on graphene-silver platform as a visible-light photo and bio-active nanostructure. Ceram Int 43(12):8655–8663

    Article  CAS  Google Scholar 

  224. Shahini P, Ashkarran AA (2018) Immobilization of plasmonic Ag–Au NPs on the TiO2 nanofibers as an efficient visible-light photocatalyst. Colloids Surf A Physicochem Eng Asp 537:155–162

    Article  CAS  Google Scholar 

  225. Ashkarran AA, Aghigh SM, Kavianipour M, Farahani NJ (2011) Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents. Curr Appl Phys 11(4):1048–1055

    Article  Google Scholar 

  226. Ashkarran AA (2012) A twice liquid arc discharge approach for synthesis of visible-light-active nanocrystalline Ag:ZnO photocatalyst. Appl Phys A Mater Sci Process 107(2):401–410

    Article  CAS  Google Scholar 

  227. Dai C, Lin H, Xu G, Liu Z, Wu R, Chen Y (2017) Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem Mater 29(20):8637–8652

    Article  CAS  Google Scholar 

  228. Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP (2023) Nanomaterial-based contrast agents. Nat Rev Methods Primers 3(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Huang G, Zhang KL, Chen S, Li SH, Wang LL, Wang LP, Liu R, Gao J, Yang HH (2017) Manganese-iron layered double hydroxide: a theranostic nanoplatform with pH-responsive MRI contrast enhancement and drug release. J Mater Chem B 5(20):3629–3633

    Article  CAS  PubMed  Google Scholar 

  230. Rodin A, Trushin M, Carvalho A, Castro Neto AH (2020) Collective excitations in 2D materials. Nat Rev Phys 2(10):524–537

    Article  Google Scholar 

  231. Pan W, Chen W, Min Y, Wang J, Yang Z, Xu T, Yu F, Shen G, Hu Y, Ma X (2021) ICG-loaded PEG-modified black phosphorus nanosheets for fluorescence imaging-guided breast cancer therapy. ACS Omega 6(51):35505–35513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Cheng L, Shen S, Shi S, Yi Y, Wang X, Song G, Yang K, Liu G, Barnhart TE, Cai W, Liu Z (2016) FeSe2-decorated Bi2Se3 nanosheets fabricated via cation exchange for chelator-free (64)Cu-labeling and multimodal image-guided photothermal-radiation therapy. Adv Funct Mater 26(13):2185–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Kwan CH, Matvienko A, Mandelis A (2008) Non-invasive detection of osteoporotic bone loss using photothermal radiometry and modulated luminescence. In: Progress in biomedical optics and imaging—proceedings of SPIE

  234. Xu M, Wang LV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77(4):041101

    Article  Google Scholar 

  235. Da Silva GH, Franqui LS, Petry R, Maia MT, Fonseca LC, Fazzio A, Alves OL, Martinez DST (2021) Recent advances in immunosafety and nanoinformatics of two-dimensional materials applied to nano-imaging. Front Immunol 12:689519

    Article  PubMed  PubMed Central  Google Scholar 

  236. Wu J, Dong W, Zhang Z, Liu J, Akioma M, Liu J, Liu Y, Pliss A, Zhang X, Luan P (2021) Emerging two-dimensional materials-based diagnosis of neurodegenerative diseases: status and challenges. Nano Today 40:101284

    Article  CAS  Google Scholar 

  237. Liu F, Lin L, Zhang Y, Sheng S, Wang Y, Xu C, Tian H, Chen X (2019) Two-dimensional nanosheets with high curcumin loading content for multimodal imaging-guided combined chemo-photothermal therapy. Biomaterials 223:119470

    Article  CAS  PubMed  Google Scholar 

  238. Song Y, Wang M, Akkineni S, Yang W, Hettige JJ, ** H, Liao Z, Mu P, Yan F, Baer M, De Yoreo JJ, Du D, Lin Y, Chen CL (2021) Highly bright and photostable two-dimensional nanomaterials assembled from sequence-defined peptoids. ACS Mater Lett 3(4):420–427

    Article  CAS  Google Scholar 

  239. Chen M, Chen S, He C, Mo S, Wang X, Liu G, Zheng N (2017) Safety profile of two-dimensional Pd nanosheets for photothermal therapy and photoacoustic imaging. Nano Res 10(4):1234–1248

    Article  CAS  Google Scholar 

  240. Hu R, Chen Z, Dai C, Guo X, Feng W, Liu Z, Lin H, Chen Y, Wu R (2021) Engineering two-dimensional silicene composite nanosheets for dual-sensitized and photonic hyperthermia-augmented cancer radiotherapy. Biomaterials 269:120455

    Article  CAS  PubMed  Google Scholar 

  241. Qian X, Gu Z, Chen Y (2017) Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Mater Horiz 4(5):800–816

    Article  CAS  Google Scholar 

  242. Tang W, Fan W, Zhang W, Yang Z, Li L, Wang Z, Chiang YL, Liu Y, Deng L, He L, Shen Z, Jacobson O, Aronova MA, ** A, **e J, Chen X (2019) Wet/sono-chemical synthesis of enzymatic two-dimensional MnO2 nanosheets for synergistic catalysis-enhanced phototheranostics. Adv Mater 31(19):1900401

    Article  Google Scholar 

  243. Chen J, Liu C, Hu D, Wang F, Wu H, Gong X, Liu X, Song L, Sheng Z, Zheng H (2016) Single-layer MoS2 nanosheets with amplified photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors. Adv Funct Mater 26(47):8715–8725

    Article  CAS  Google Scholar 

  244. Tsvetkova E, Goss GD (2012) Drug resistance and its significance for treatment decisions in non-small-cell lung cancer. Curr Oncol 19(S1):S45–S51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. He C, Yu L, Ding L, Yao H, Chen Y, Hao Y (2020) Lysine demethylase KDM3A regulates nanophotonic hyperthermia resistance generated by 2D silicene in breast cancer. Biomaterials 255:120181

    Article  CAS  PubMed  Google Scholar 

  246. Liu J, Sun L, Li L, Zhang R, Xu ZP (2021) Synergistic cancer photochemotherapy via layered double hydroxide-based trimodal nanomedicine at very low therapeutic doses. ACS Appl Mater Interfaces 13(6):7115–7126

    Article  CAS  PubMed  Google Scholar 

  247. Ash C, Dubec M, Donne K, Bashford T (2017) Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci 32(8):1909–1918

    Article  PubMed  PubMed Central  Google Scholar 

  248. Fan X, Ding Y, Liu Y, Liang J, Chen Y (2019) Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 13(7):8124–8134

    Article  CAS  PubMed  Google Scholar 

  249. Harries RW, Brown CJ, Woodbine L, Amorim Graf A, Large MJ, Clifford K, Lynch PJ, Ogilvie SP, Dalton AB, King AAK (2021) Cell-substrate interactions lead to internalization and localization of layered MoS2 nanosheets. ACS Appl Nano Mater 4(2):2002–2010

    Article  CAS  Google Scholar 

  250. Cheng L, Wang C, Feng L, Yang K, Liu Z (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114(21):10869–10939

    Article  CAS  PubMed  Google Scholar 

  251. Gong H, Dong Z, Liu Y, Yin S, Cheng L, ** W, **ang J, Liu K, Li Y, Liu Z (2014) Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging. Adv Funct Mater 24(41):6492–6502

    Article  CAS  Google Scholar 

  252. Huang R, Zhang C, Bu Y, Li Z, Zheng X, Qiu S, Machuki JO, Zhang L, Yang Y, Guo K, Gao F (2021) A multifunctional nano-therapeutic platform based on octahedral yolk-shell Au NR@CuS: photothermal/photodynamic and targeted drug delivery tri-combined therapy for rheumatoid arthritis. Biomaterials 277:121088

    Article  CAS  PubMed  Google Scholar 

  253. Liu Z, Wu M, Xue Y, Chen C, Wurm FR, Lan M, Zhang W (2020) Hydrophilic polyphosphoester-conjugated fluorinated chlorin as an entirely biodegradable nano-photosensitizer for reliable and efficient photodynamic therapy. Chem Commun 56(16):2415–2418

    Article  CAS  Google Scholar 

  254. Rong P, Yang K, Srivastan A, Kiesewetter D, Yue X, Wang F, Nie L, Bhirde A, Wang Z, Liu Z, Niu G, Wang W, Chen X (2014) Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics 4(3):229–239

    Article  PubMed  PubMed Central  Google Scholar 

  255. Liu Q, Guo B, Rao Z, Zhang B, Gong JR (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13(6):2436–2441

    Article  CAS  PubMed  Google Scholar 

  256. Tian B, Wang C, Zhang S, Feng L, Liu Z (2011) Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5(9):7000–7009

    Article  CAS  PubMed  Google Scholar 

  257. Yang X, Wang D, Shi Y, Zou J, Zhao Q, Zhang Q, Huang W, Shao J, **e X, Dong X (2018) Black phosphorus nanosheets immobilizing Ce6 for imaging-guided photothermal/photodynamic cancer therapy. ACS Appl Mater Interfaces 10(15):12431–12440

    Article  CAS  PubMed  Google Scholar 

  258. Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5(3):231–237

    Article  CAS  PubMed  Google Scholar 

  259. Kerr JFR, Winterford CM, Harmon BV (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer 73(8):2013–2026

    Article  CAS  PubMed  Google Scholar 

  260. Shi Z, Tang J, Lin C, Chen T, Zhang F, Huang Y, Luan P, **n Z, Li Q, Mei L (2022) Construction of iron-mineralized black phosphorene nanosheet to combinate chemodynamic therapy and photothermal therapy. Drug Deliv 29(1):624–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Chu Y, Xu XQ, Wang Y (2022) Ultradeep photothermal therapy strategies. J Phys Chem Lett 13(41):9564–9572

    Article  CAS  PubMed  Google Scholar 

  262. Tang B, Li WL, Chang Y, Yuan B, Wu Y, Zhang MT, Xu JF, Li J, Zhang X (2019) A supramolecular radical dimer: high-efficiency NIR-II photothermal conversion and therapy. Angew Chem Int Ed 58(43):15526–15531

    Article  CAS  Google Scholar 

  263. Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38(15):2543–2555

    Article  CAS  Google Scholar 

  264. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(11):R37–R61

    Article  PubMed  Google Scholar 

  265. Liu Z, Zhao X, Yu B, Zhao N, Zhang C, Xu F-J (2021) Rough carbon–iron oxide nanohybrids for near-infrared-II Light-responsive synergistic antibacterial therapy. ACS Nano 15(4):7482–7490

    Article  CAS  PubMed  Google Scholar 

  266. Sun T, Dou J-H, Liu S, Wang X, Zheng X, Wang Y, Pei J, **e Z (2018) Second near-infrared conjugated polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Appl Mater Interfaces 10(9):7919–7926

    Article  CAS  PubMed  Google Scholar 

  267. Ding X, Pu Y, Tang M, Zhang T (2022) Environmental and health effects of graphene-family nanomaterials: potential release pathways, transformation, environmental fate and health risks. Nano Today 42:101379

    Article  CAS  Google Scholar 

  268. Pattnaik S, Swain K, Lin Z (2016) Graphene and graphene-based nanocomposites: biomedical applications and biosafety. J Mater Chem B 4(48):7813–7831

    Article  CAS  PubMed  Google Scholar 

  269. Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15–34

    Article  CAS  PubMed  Google Scholar 

  270. Ashkarran AA, Swann J, Hollis L, Mahmoudi M (2021) The file drawer problem in nanomedicine. Trends Biotechnol 39(5):425–427

    Article  CAS  PubMed  Google Scholar 

  271. Rahman A, Sarkar A, Yadav OP, Achari G, Slobodnik J (2021) Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: a sco** review. Sci Total Environ 757:143872

    Article  CAS  PubMed  Google Scholar 

  272. Guiney LM, Wang X, **a T, Nel AE, Hersam MC (2018) Assessing and mitigating the hazard potential of two-dimensional materials. ACS Nano 12(7):6360–6377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Zhang Q, Wu Z, Li N, Pu Y, Wang B, Zhang T, Tao J (2017) Advanced review of graphene-based nanomaterials in drug delivery systems: synthesis, modification, toxicity and application. Mater Sci Eng C 77:1363–1375

    Article  CAS  Google Scholar 

  274. Ganguly P, Breen A, Pillai SC (2018) Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances. ACS Biomater Sci Eng 4(7):2237–2275

    Article  CAS  PubMed  Google Scholar 

  275. Ashkarran AA, Gharibi H, Grunberger JW, Saei AA, Khurana N, Mohammadpour R, Ghandehari H, Mahmoudi M (2023) Sex-specific silica nanoparticle protein corona compositions exposed to male and female BALB/c mice plasmas. ACS Bio Med Chem Au 3(1):62–73

    Article  CAS  PubMed  Google Scholar 

  276. Ashkarran AA, Dararatana N, Crespy D, Caracciolo G, Mahmoudi M (2020) Map** the heterogeneity of protein corona by: ex vivo magnetic levitation. Nanoscale 12(4):2374–2383

    Article  CAS  PubMed  Google Scholar 

  277. Ashkarran AA, Gharibi H, Voke E, Landry MP, Saei AA, Mahmoudi M (2022) Measurements of heterogeneity in proteomics analysis of the nanoparticle protein corona across core facilities. Nat Commun 13(1):6610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Xue P, Wang J, Han X, Wang Y (2019) Hydrophobic drug self-delivery systems as a versatile nanoplatform for cancer therapy: a review. Colloids Surf B Biointerfaces 180:202–211

    Article  CAS  PubMed  Google Scholar 

  279. Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: an update. Bioeng Transl Med 4(3):e10143

    Article  PubMed  PubMed Central  Google Scholar 

  280. Wu J, Yu Y, Su G (2022) Safety assessment of 2D MXenes: in vitro and in vivo. Nanomaterials 12(5):828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Maruthupandy M, Rethinasabapathy M, Jeon S, Jeong J, Kim E, Lee S, Kim S, Kim G, Ha Y, Bae E, Huh YS, Cho W-S (2023) Role of reactive oxygen species in the toxicity of two-dimensional nanomaterials: a study on layered Ti3C2 MXenes. Nano Today 51:101925

    Article  CAS  Google Scholar 

  282. Xu M, Zhu J, Wang F, **ong Y, Wu Y, Wang Q, Weng J, Zhang Z, Chen W, Liu S (2016) Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: poly(acrylic acid)-functionalization is superior to PEGylation. ACS Nano 10(3):3267–3281

    Article  CAS  PubMed  Google Scholar 

  283. Qu G, Liu W, Zhao Y, Gao J, **a T, Shi J, Hu L, Zhou W, Gao J, Wang H, Luo Q, Zhou Q, Liu S, Yu XF, Jiang G (2017) Improved biocompatibility of black phosphorus nanosheets by chemical modification. Angew Chem (Int Ed Engl) 56(46):14488–14493

    Article  CAS  PubMed  Google Scholar 

  284. Syama S, Mohanan PV (2016) Safety and biocompatibility of graphene: a new generation nanomaterial for biomedical application. Int J Biol Macromol 86:546–555

    Article  CAS  PubMed  Google Scholar 

  285. Montagner A, Bosi S, Tenori E, Bidussi M, Alshatwi AA, Tretiach M, Prato M, Syrgiannis Z (2017) Ecotoxicological effects of graphene-based materials. 2D Mater 4(1):012001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MRO, BM, MS, and AAA wrote, edited, and reviewed the manuscript.

Corresponding author

Correspondence to Ali Akbar Ashkarran.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osanloo, M.R., Mohammadi, B., Shahedi, M. et al. Optoelectronic tuning of two-dimensional engineered nanomaterials for enhanced photothermal therapy: opportunities and challenges. Graphene and 2D mater (2024). https://doi.org/10.1007/s41127-024-00079-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41127-024-00079-5

Keywords

Navigation