Log in

Innovative Approaches in Extremophile-Mediated Remediation of Toxic Pollutants: A Comprehensive Review

  • Review
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

This comprehensive review explores the intriguing potential of extremophiles in revolutionizing the remediation of toxic pollutants. Extremophiles, remarkable microorganisms thriving in extreme environments, exhibit unique biochemical and physiological adaptations that equip them with the ability to withstand and even thrive in environments polluted with toxic compounds. This review delves into their diverse mechanisms for heavy metal, dye, and plastic degradation, which include enzymatic pathways, metabolic processes, and symbiotic relationships. Through an extensive survey of recent literature, this review highlights the remarkable successes achieved in utilizing extremophiles for bioremediation purposes. This review explores the latest progressions within microbial bioremediation methods, highlighting advanced approaches that leverage the potential of microorganisms to degrade toxic pollutants effectively. Additionally, challenges and prospects in harnessing extremophilic activity for innovative pollutant clean-up are discussed. By comprehensively examining the potential of extremophiles, this review focuses on their distinct metabolic pathways, modifications, and modern technologies, like nanotechnologies and genetic modification, that enable them to survive in harsh environments and can be used to remediate the environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data will be made available upon request.

Code Availability

Not applicable.

References

  1. Abdi DE, Owen JS Jr, Brindley JC, Birnbaum AC, Wilson PC, Hinz FO, Reguera G, Lee JY, Cregg BM, Kort DR, Fernandez RT (2020) Nutrient and pesticide remediation using a two-stage bioreactor-adsorptive system under two hydraulic retention times. Water Res 170:115311. https://doi.org/10.1016/j.watres.2019.115311

    Article  CAS  Google Scholar 

  2. Adeleye AT, Bahar MM, Megharaj M, Fang C, Rahman MM (2024) The unseen threat of the synergistic effects of microplastics and heavy metals in aquatic environments: a critical review. Curr Pollut Rep, pp 1–20. https://doi.org/10.1007/s40726-024-00298-7

  3. Affat SS (2021) Classifications, advantages, disadvantages, toxicity effects of natural and synthetic dyes: a review. UTJ Sci 8(1):130–135. https://doi.org/10.32792/utq/utjsci/v8/1/21

    Article  Google Scholar 

  4. Afraz V, Younesi H, Bolandi M, Hadiani MR (2020) Optimization of lead and cadmium biosorption by Lactobacillus acidophilus using response surface methodology. Biocatal Agric Biotechnol 29:101828. https://doi.org/10.1016/j.bcab.2020.101828

    Article  Google Scholar 

  5. Ajith MP, Aswathi M, Priyadarshini E, Rajamani P (2021) Recent innovations of nanotechnology in water treatment: a comprehensive review. Bioresour Technol 342:126000. https://doi.org/10.1016/j.biortech.2021.126000

    Article  CAS  Google Scholar 

  6. Alabi OA, Ologbonjaye KI, Awosolu O, Alalade OE (2019) Public and environmental health effects of plastic wastes disposal: a review. J Toxicol Risk Assess 5(021):1–13. https://doi.org/10.23937/2572-4061.1510021

    Article  CAS  Google Scholar 

  7. Ali S, Khan SA, Hamayun M, Lee IJ (2023) The recent advances in the utility of microbial lipases: a review. Microorganisms 11(2):510. https://doi.org/10.3390/microorganisms11020510

    Article  CAS  Google Scholar 

  8. Alzain H, Kalimugogo V, Hussein K, Karkadan M (2023) A review of environmental impact of azo dyes. Int J Res Rev 10:64–689. https://doi.org/10.52403/ijrr.20230682

    Article  CAS  Google Scholar 

  9. Aminian-Dehkordi J, Rahimi S, Golzar-Ahmadi M, Singh A, Lopez J, Ledesma-Amaro R, Mijakovic I (2023) Synthetic biology tools for environmental protection. Biotechnol Adv 68:108239. https://doi.org/10.1016/j.biotechadv.2023.108239

    Article  Google Scholar 

  10. An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C (2022) Engineered living materials for sustainability. Chem Rev 123(5):2349–2419. https://doi.org/10.1021/acs.chemrev.2c00512

    Article  CAS  Google Scholar 

  11. Anastas PT, Rodriguez A, de Winter TM, Coish P, Zimmerman JB (2021) A review of immobilization techniques to improve the stability and bioactivity of lysozyme. Green Chem Lett Rev 14(2):302–338. https://doi.org/10.1080/17518253.2021.1890840

    Article  CAS  Google Scholar 

  12. Ando N, Barquera B, Bartlett DH, Boyd E, Burnim AA, Byer AS, Colman D, Gillilan RE, Gruebele M, Makhatadze G, Royer CA (2021) The molecular basis for life in extreme environments. Annu Rev Biophys 50:343–372. https://doi.org/10.1146/annurev-biophys-100120-072804

    Article  CAS  Google Scholar 

  13. Aragaw TA (2021) Functions of various bacteria for specific pollutants degradation and their application in wastewater treatment: a review. Int J Environ Sci Technol 18:2063–2076. https://doi.org/10.1007/s13762-020-03022-2

    Article  CAS  Google Scholar 

  14. Arce-Rodríguez A, Puente-Sánchez F, Avendaño R, Libby E, Mora-Amador R, Rojas-Jimenez K, Martínez M, Pieper DH, Chavarría M (2020) Microbial community structure along a horizontal oxygen gradient in a Costa Rican volcanic influenced acid rock drainage system. Microb Ecol 80:793–808. https://doi.org/10.1007/s00248-020-01530-9

    Article  CAS  Google Scholar 

  15. Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC (2020) Inflammatory effects of particulate matter air pollution. Environ Sci Pollut Res 27(34):42390–42404. https://doi.org/10.1007/s11356-020-10574-w

    Article  Google Scholar 

  16. Arias-Sánchez FI, Vessman B, Mitri S (2019) Artificially selecting microbial communities: If we can breed dogs, why not microbiomes? PLoS Biol 17(8):e3000356. https://doi.org/10.1371/journal.pbio.3000356

    Article  CAS  Google Scholar 

  17. Arora NK, Panosyan H (2019) Extremophiles: applications and roles in environmental sustainability. Environ Sustain 2:217–218. https://doi.org/10.1007/s42398-019-00082-0

    Article  Google Scholar 

  18. Atanasova N, Stoitsova S, Paunova-Krasteva T, Kambourova M (2021) Plastic degradation by extremophilic bacteria. Int J Mol Sci 22(11):5610. https://doi.org/10.3390/ijms22115610

    Article  CAS  Google Scholar 

  19. Babuji P, Thirumalaisamy S, Duraisamy K, Periyasamy G (2023) Human health risks due to exposure to water pollution: a review. Water 15(14):2532. https://doi.org/10.3390/w15142532

    Article  CAS  Google Scholar 

  20. Bawn M, Subrizi F, Lye GJ, Sheppard TD, Hailes HC, Ward JM (2018) One-pot, two-step transaminase and transketolase synthesis of l-gluco-heptulose from l-arabinose. Enzyme Microb Technol 116:16–22. https://doi.org/10.1016/j.enzmictec.2018.05.006

    Article  CAS  Google Scholar 

  21. Białkowska A, Majewska E, Olczak A, Twarda-Clapa A (2020) Ice binding proteins: diverse biological roles and applications in different types of industry. Biomolecules 10(2):274. https://doi.org/10.3390/biom10020274

    Article  CAS  Google Scholar 

  22. Borchert E, Hammerschmidt K, Hentschel U, Deines P (2021) Enhancing microbial pollutant degradation by integrating eco-evolutionary principles with environmental biotechnology. Trends Microbiol 29(10):908–918. https://doi.org/10.1016/j.tim.2021.03.002

    Article  CAS  Google Scholar 

  23. Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9):e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  CAS  Google Scholar 

  24. Budiyono B, Suhartono S, Kartini A (2023) Types and toxicity levels of pesticides: a study of an agricultural area in Brebes Regency. J Environ Health 15(1). https://doi.org/10.20473/jkl.v15i2.2023.109-119

  25. Butterworth SJ, Barton F, Lloyd JR (2023) Extremophilic microbial metabolism and radioactive waste disposal. Extremophiles 27(3):27. https://doi.org/10.1007/s00792-023-01312-4

    Article  Google Scholar 

  26. Chang CY, Osborne ML, Bajic D, Sanchez A (2020) Artificially selecting bacterial communities using propagule strategies. Evol 74(10):2392–2403. https://doi.org/10.1111/evo.14092

    Article  Google Scholar 

  27. Chaudhary DK, Kim J (2019) New insights into bioremediation strategies for oil-contaminated soil in cold environments. Int Biodeterior Biodegradation 142:58–72. https://doi.org/10.1016/j.ibiod.2019.05.001

    Article  CAS  Google Scholar 

  28. Chettri D, Verma AK, Sarkar L, Verma AK (2021) Role of extremophiles and their extremozymes in biorefinery process of lignocellulose degradation. Extremophiles 25:203–219. https://doi.org/10.1007/s00792-021-01225-0

    Article  CAS  Google Scholar 

  29. Chia XK, Hadibarata T, Jusoh MNH, Sutiknowati LI, Tan IS, Foo HCY (2024) Role of extremophiles in biodegradation of emerging pollutants. Top Catal, pp 1–18. https://doi.org/10.1007/s11244-024-01919-7

  30. Choi JY, Lee K, Lee PC (2019) Characterization of carotenoid biosynthesis in newly isolated Deinococcus sp. AJ005 and investigation of the effects of environmental conditions on cell growth and carotenoid biosynthesis. Mar Drugs 17(12):705. https://doi.org/10.3390/md17120705

    Article  CAS  Google Scholar 

  31. Coker JA (2019) Recent advances in understanding extremophiles. F1000research 8. 10.12688%2Ff1000research.20765.1

  32. Collins T, Margesin R (2019) Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biotechnol 103:2857–2871. https://doi.org/10.1007/s00253-019-09659-5

    Article  CAS  Google Scholar 

  33. Combes A, Franchineau G (2019) Fine particle environmental pollution and cardiovascular diseases. Metab 100:153944. https://doi.org/10.1016/j.metabol.2019.07.008

    Article  CAS  Google Scholar 

  34. Corral P, Amoozegar MA, Ventosa A (2019) Halophiles and their biomolecules: recent advances and future applications in biomedicine. Mar Drugs 18(1):33. https://doi.org/10.3390/md18010033

    Article  CAS  Google Scholar 

  35. Costa LG, Cole TB, Dao K, Chang YC, Garrick JM (2019) Developmental impact of air pollution on brain function. Neurochem Int 131:104580. https://doi.org/10.1016/j.neuint.2019.104580

    Article  CAS  Google Scholar 

  36. Crognale S, Venturi S, Tassi F, Rossetti S, Cabassi J, Capecchiacci F, Bicocchi G, Vaselli O, Morrison HG, Sogin ML, Fazi S (2022) Geochemical and microbiological profiles in hydrothermal extreme acidic environments (Pisciarelli Spring, Campi Flegrei, Italy). FEMS Microbiol Ecol 98(10):fiac088. https://doi.org/10.1093/femsec/fiac088

    Article  CAS  Google Scholar 

  37. Cui MD, Wang X, Jiang WK, Hu G, Yang ZG, Sun GJ, Zhu SJ, Zhou YD, Hong Q (2018) Pedobacter agrisoli sp. nov., isolated from farmland soil. Int J Syst Evol 68(3):886–891. https://doi.org/10.1099/ijsem.0.002604

    Article  CAS  Google Scholar 

  38. Dangi AK, Sharma B, Hill RT, Shukla P (2019) Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol 39(1):79–98. https://doi.org/10.1080/07388551.2018.1500997

    Article  CAS  Google Scholar 

  39. Dixit M, Gupta GK, Usmani Z, Sharma M, Shukla P (2021) Enhanced bioremediation of pulp effluents through improved enzymatic treatment strategies: a greener approach. Renew Sust Energ Rev 152:111664. https://doi.org/10.1016/j.rser.2021.111664

    Article  CAS  Google Scholar 

  40. Elumalai P, Parthipan P, Narenkumar J, Anandakumar B, Madhavan J, Oh BT, Rajasekar A (2019) Role of thermophilic bacteria (Bacillus and Geobacillus) on crude oil degradation and biocorrosion in oil reservoir environment. 3 Biotech 9:1–11. https://doi.org/10.1007/s13205-019-1604-0

    Article  Google Scholar 

  41. Elgarahy AM, Elwakeel KZ, Mohammad SH, Elshoubaky GA (2021) A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean Eng Technol 4:100209. https://doi.org/10.1016/j.clet.2021.100209

    Article  Google Scholar 

  42. Eskandari F, Shahnavaz B, Mashreghi M (2019) Optimization of complete RB-5 azo dye decolorization using novel cold-adapted and mesophilic bacterial consortia. J Environ Manage 241:91–98. https://doi.org/10.1016/j.jenvman.2019.03.125

    Article  CAS  Google Scholar 

  43. French KE, Zhou Z, Terry N (2020) Horizontal ‘gene drives’ harness indigenous bacteria for bioremediation. Sci Rep 10(1):15091. https://doi.org/10.1038/s41598-020-72138-9

    Article  CAS  Google Scholar 

  44. Frolova AA, Slobodkina GB, Baslerov RV, Novikov AA, Bonch-Osmolovskaya EA, Slobodkin AI (2018) Thermosulfurimonas marina sp. nov., an autotrophic sulfur-disproportionating and nitrate-reducing bacterium isolated from a shallow-sea hydrothermal vent. Microbiology 87:502–507. https://doi.org/10.1134/S0026261718040082

    Article  CAS  Google Scholar 

  45. Gallo G, Puopolo R, Carbonaro M, Maresca E, Fiorentino G (2021) Extremophiles, a nifty tool to face environmental pollution: from exploitation of metabolism to genome engineering. Int J Environ Res Public Health 18(10):5228. https://doi.org/10.3390/ijerph18105228

    Article  CAS  Google Scholar 

  46. Gallo A Jr, Odokonyero K, Mousa MA, Reihmer J, Al-Mashharawi S, Marasco R, Manalastas E, Morton MJ, Daffonchio D, McCabe MF, Tester M (2022) Nature-inspired superhydrophobic sand mulches increase agricultural productivity and water-use efficiency in arid regions. ACS Agric Sci Technol 2:276–288. https://doi.org/10.1021/acsagscitech.1c00148

    Article  CAS  Google Scholar 

  47. George DM, Vincent AS, Mackey HR (2020) An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable resource recovery. Biotechnol Rep 28:e00563. https://doi.org/10.1016/j.btre.2020.e00563

    Article  Google Scholar 

  48. Ghattavi S, Homaei A (2023) Marine enzymes: classification and application in various industries. Int J Biol Macromol 230:123136. https://doi.org/10.1016/j.ijbiomac.2023.123136

    Article  CAS  Google Scholar 

  49. Giovanella P, Vieira GA, Otero IVR, Pellizzer EP, de Jesus FB, Sette LD (2020) Metal and organic pollutants bioremediation by extremophile microorganisms. J Hazard Mater 382:121024. https://doi.org/10.1016/j.jhazmat.2019.121024

    Article  CAS  Google Scholar 

  50. Guan N, Liu L (2020) Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol 104(1):51–65. https://doi.org/10.1007/s00253-019-10226-1

    Article  CAS  Google Scholar 

  51. Gunde-Cimerman N, Plemenitaš A, Oren A (2018) Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 42(3):353–375. https://doi.org/10.1093/femsre/fuy009

    Article  CAS  Google Scholar 

  52. Guo J, Ma Z, Gao J, Zhao J, Wei L, Liu J, Xu N (2019) Recent advances of pH homeostasis mechanisms in Corynebacterium glutamicum. World J Microbiol Biotechnol 35:1–10. https://doi.org/10.1007/s11274-019-2770-2

    Article  CAS  Google Scholar 

  53. Hanafi MF, Sapawe N (2020) A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater Today: Proc 31:A141–A150. https://doi.org/10.1016/j.matpr.2021.01.258

    Article  CAS  Google Scholar 

  54. Haripriyan U, Gopinath KP, Arun J, Govarthanan M (2022) Bioremediation of organic pollutants: a mini review on current and critical strategies for wastewater treatment. Arch Microbiol 204(5):286. https://doi.org/10.1007/s00203-022-02907-9

    Article  CAS  Google Scholar 

  55. Hassan A, Hamid FS, Pariatamby A, Suhaimi NSM, Ling KN, Mohan P (2023) Bioaugmentation-assisted bioremediation and biodegradation mechanisms for PCB in contaminated environments: a review on sustainable clean-up technologies. J Environ Chem Eng 11(3):110055. https://doi.org/10.1016/j.jece.2023.110055

    Article  CAS  Google Scholar 

  56. Hedrich S, Schippers A (2021) Distribution of acidophilic microorganisms in natural and man-made acidic environments. Curr Issues Mol Biol 40(1):25–48. https://doi.org/10.21775/cimb.040.025

    Article  Google Scholar 

  57. Huang X, Nong X, Liang K, Chen P, Zhao Y, Jiang D, **ong J (2023) Efficient Mn (II) removal mechanism by Serratia marcescens QZB-1 at high manganese concentration. Front Microbiol 14:1150849. https://doi.org/10.3389/fmicb.2023.1150849

    Article  Google Scholar 

  58. Iqubal A, Ahmed M, Ahmad S, Sahoo CR, Iqubal MK, Haque SE (2020) Environmental neurotoxic pollutants. Environ Sci Pollut Res 27:41175–41198. https://doi.org/10.1007/s11356-020-10539-z

    Article  CAS  Google Scholar 

  59. Jacquin L, Petitjean Q, Côte J, Laffaille P, Jean S (2020) Effects of pollution on fish behavior, personality, and cognition: some research perspectives. Front Ecol Evol 8:86. https://doi.org/10.3389/fevo.2020.00086

    Article  Google Scholar 

  60. Jaiswal S, Shukla P (2020) Alternative strategies for microbial remediation of pollutants via synthetic biology. Front Microbiol 11:808. https://doi.org/10.3389/fmicb.2020.00808

    Article  Google Scholar 

  61. Jeong SW, Choi YJ (2020) Extremophilic microorganisms for the treatment of toxic pollutants in the environment. Molecules 25(21):4916. https://doi.org/10.3390/molecules25214916

    Article  CAS  Google Scholar 

  62. Jiang LL, Li K, Yan DL, Yang MF, Ma L, **e LZ (2020) Toxicity assessment of 4 azo dyes in zebrafish embryos. Int J Toxicol 39(2):115–123. https://doi.org/10.1177/1091581819898396

    Article  CAS  Google Scholar 

  63. ** M, Gai Y, Guo X, Hou Y, Zeng R (2019) Properties and applications of extremozymes from deep-sea extremophilic microorganisms: a mini-review. Mar Drugs 17(12):656. https://doi.org/10.3390/md17120656

    Article  CAS  Google Scholar 

  64. ** S, Bae J, Song Y, Pearcy N, Shin J, Kang S, Minton NP, Soucaille P, Cho BK (2020) Synthetic biology on acetogenic bacteria for highly efficient conversion of C1 gases to biochemicals. Int J Mol Sci 21(20):7639. https://doi.org/10.3390/ijms21207639

    Article  CAS  Google Scholar 

  65. Kakkar P, Wadhwa N (2022) Extremozymes used in textile industry. J Text Inst 113(9):2007–2015

    Article  CAS  Google Scholar 

  66. Kamizela T, Grobelak A, Worwag M (2021) Use of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans in the recovery of heavy metals from landfill leachates. Energies 14(11):3336. https://doi.org/10.3390/en14113336

    Article  CAS  Google Scholar 

  67. Kapoor RT, Danish M, Singh RS, Rafatullah M, HPS AK (2021) Exploiting microbial biomass in treating azo dyes contaminated wastewater: mechanism of degradation and factors affecting microbial efficiency. J Water Process Eng 43:102255. https://doi.org/10.1016/j.jwpe.2021.102255

    Article  Google Scholar 

  68. Khan MF, Hof C, Niemcová P, Murphy CD (2023) Recent advances in fungal xenobiotic metabolism: enzymes and applications. World J Microbiol Biotechnol 39(11):1–20. https://doi.org/10.1007/s11274-023-03737-7

    Article  CAS  Google Scholar 

  69. Kiledal EA, Keffer JL, Maresca JA (2021) Bacterial communities in concrete reflect its composite nature and change with weathering. mSystems 6(3):e01153-20. https://doi.org/10.1128/msystems.01153-20

    Article  CAS  Google Scholar 

  70. Kochhar N, Shrivastava S, Ghosh A, Rawat VS, Sodhi KK, Kumar M (2022) Perspectives on the microorganism of extreme environments and their applications. Curr Res Microb Sci 3:100134. https://doi.org/10.1016/j.crmicr.2022.100134

    Article  CAS  Google Scholar 

  71. Koul B, Poonia AK, Yadav D, ** JO (2021) Microbe-mediated biosynthesis of nanoparticles: applications and future prospects. Biomolecules 11(6):886. https://doi.org/10.3390/biom11060886

    Article  CAS  Google Scholar 

  72. Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D, Singh J, Suyal DC, Kumar A, Rajput VD, Yadav AN (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28:24917–24939. https://doi.org/10.1007/s11356-021-13252-7

    Article  CAS  Google Scholar 

  73. Krolicka A, Boccadoro C, Nilsen MM, Demir-Hilton E, Birch J, Preston C, Scholin C, Baussant T (2019) Identification of microbial key-indicators of oil contamination at sea through tracking of oil biotransformation: an Arctic field and laboratory study. Sci Total Environ 696:133715. https://doi.org/10.1016/j.scitotenv.2019.133715

    Article  CAS  Google Scholar 

  74. Kumar A, Singh AK, Bilal M, Chandra R (2021) Extremophilic ligninolytic enzymes: versatile biocatalytic tools with impressive biotechnological potential. Catal Lett 152:1–25. https://doi.org/10.1007/s10562-021-03800-8

    Article  CAS  Google Scholar 

  75. Lauritano C, Rizzo C, Lo Giudice A, Saggiomo M (2020) Physiological and molecular responses to main environmental stressors of microalgae and bacteria in polar marine environments. Microorganisms 8(12):1957. https://doi.org/10.3390/microorganisms8121957

    Article  CAS  Google Scholar 

  76. Lecocq M, Groussin M, Gouy M, Brochier-Armanet C (2021) The molecular determinants of thermoadaptation: Methanococcales as a case study. Mol Biol Evol 38(5):1761–1776. https://doi.org/10.1093/molbev/msaa312

    Article  CAS  Google Scholar 

  77. Lee YG, Lee PH, Choi SM, An MH, Jang AS (2021) Effects of air pollutants on airway diseases. Int J Environ Res Public Health 18(18):9905. https://doi.org/10.3390/ijerph18189905

    Article  CAS  Google Scholar 

  78. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3(2):275–290. https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  79. Levett A, Gleeson SA, Kallmeyer J (2021) From exploration to remediation: a microbial perspective for innovation in mining. Earth-Sci Rev 216:103563. https://doi.org/10.1016/j.earscirev.2021.103563

    Article  CAS  Google Scholar 

  80. Li F, Guo S, Wu B, Wang S (2020) Pilot-scale electro-bioremediation of heavily PAH-contaminated soil from an abandoned coking plant site. Chemosphere 244:125467. https://doi.org/10.1016/j.chemosphere.2019.125467

    Article  CAS  Google Scholar 

  81. Li H, Yao QZ, Wang FP, Huang YR, Fu SQ, Zhou GT (2019) Insights into the formation mechanism of vaterite mediated by a deep-sea bacterium Shewanella piezotolerans WP3. Geochim Cosmochim Acta 256:35–48. https://doi.org/10.1016/j.gca.2018.06.011

    Article  CAS  Google Scholar 

  82. Li M, Zhou J, Xu F, Li G, Ma T (2021) An cost-effective production of bacterial exopolysaccharide emulsifier for oil pollution bioremediation. Int Biodeter Biodegr 159:105202. https://doi.org/10.1016/j.ibiod.2021.105202

    Article  CAS  Google Scholar 

  83. Li S, Zhu Q, Luo J, Shu Y, Guo K, **e J, **ao F, He S (2021) Application progress of Deinococcus radiodurans in biological treatment of radioactive uranium-containing wastewater. Indian J Med Microbiol 61(4):417–426. https://doi.org/10.1007/s12088-021-00969-9

    Article  CAS  Google Scholar 

  84. Li X, Wu S, Dong Y, Fan H, Bai Z, Zhuang X (2021) Engineering microbial consortia towards bioremediation. Water 13(20):2928. https://doi.org/10.3390/w13202928

    Article  CAS  Google Scholar 

  85. Li Z, Wang X, Wang J, Yuan X, Jiang X, Wang Y, Zhong C, Xu D, Gu T, Wang F (2022) Bacterial biofilms as platforms engineered for diverse applications. Biotechnol Adv 57:107932. https://doi.org/10.1016/j.biotechadv.2022.107932

    Article  CAS  Google Scholar 

  86. Liang Y, Yu H (2021) Genetic toolkits for engineering Rhodococcus species with versatile applications. Biotechnol Adv 49:107748. https://doi.org/10.1016/j.biotechadv.2021.107748

    Article  CAS  Google Scholar 

  87. Lim S, Jung JH, Blanchard L, de Groot A (2019) Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 43(1):19–52. https://doi.org/10.1093/femsre/fuy037

    Article  CAS  Google Scholar 

  88. Lin S, Chen XW, Cai Z, Shi J, Fu J, Jiang G, Wong MH (2022) Remediation of emerging contaminated sites due to uncontrolled e-waste recycling. J Chem Eng 430:133169. https://doi.org/10.1016/j.cej.2021.133169

    Article  CAS  Google Scholar 

  89. Liu R, Wang L, Wei Y, Fang J (2018) The hadal biosphere: recent insights and new directions. Deep Sea Res Part II Top Stud Oceanogr 155:11–18. https://doi.org/10.1016/j.dsr2.2017.04.015

    Article  Google Scholar 

  90. Liu S, Zheng Y, Ma Y, Sarwar A, Zhao X, Luo T, Yang Z (2019) Evaluation and proteomic analysis of lead adsorption by lactic acid bacteria. Int J Mol Sci 20(22):5540. https://doi.org/10.3390/ijms20225540

    Article  CAS  Google Scholar 

  91. Long Z, Huang Y, Zhang W, Shi Z, Yu D, Chen Y, Liu C, Wang R (2021) Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environ Monit Assess 193:1–12. https://doi.org/10.1007/s10661-020-08807-z

    Article  CAS  Google Scholar 

  92. Lyu H, Tang J, Shen B, Siddique T (2018) Development of a novel chem-bio hybrid process using biochar supported nanoscale iron sulfide composite and Corynebacterium variabile HRJ4 for enhanced trichloroethylene dechlorination. Water Res 147:132–141. https://doi.org/10.1016/j.watres.2018.09.038

    Article  CAS  Google Scholar 

  93. Ma Y, He X, Qi K, Wang T, Qi Y, Cui L, Wang F, Song M (2019) Effects of environmental contaminants on fertility and reproductive health. J Environ Sci 77:210–217. https://doi.org/10.1016/j.jes.2018.07.015

    Article  CAS  Google Scholar 

  94. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Public Health 8:14. https://doi.org/10.3389/fpubh.2020.00014

    Article  Google Scholar 

  95. Martínez GM, Pire C, Martínez-Espinosa RM (2022) Hypersaline environments as natural sources of microbes with potential applications in biotechnology: the case of solar evaporation systems to produce salt in Alicante County (Spain). Curr Res Microb Sci 3:100136. https://doi.org/10.1016/j.crmicr.2022.100136

    Article  CAS  Google Scholar 

  96. Maryjoseph S, Ketheesan B (2020) Microalgae based wastewater treatment for the removal of emerging contaminants: a review of challenges and opportunities. Case Stud Chem Environ Eng 2:100046. https://doi.org/10.1016/j.cscee.2020.100046

    Article  Google Scholar 

  97. Mehrotra T, Dev S, Banerjee A, Chatterjee A, Singh R, Aggarwal S (2021) Use of immobilized bacteria for environmental bioremediation: a review. J Environ Chem Eng 9(5):105920. https://doi.org/10.1016/j.jece.2021.105920

    Article  CAS  Google Scholar 

  98. Mishra B, Varjani S, Agrawal DC, Mandal SK, Ngo HH, Taherzadeh MJ, Chang JS, You S, Guo W (2020) Engineering biocatalytic material for the remediation of pollutants: a comprehensive review. Environ Technol Innov 20:101063. https://doi.org/10.1016/j.eti.2020.101063

    Article  CAS  Google Scholar 

  99. Misra CS, Sounderajan S, Apte SK (2021) Metal removal by metallothionein and an acid phosphatase PhoN, surface-displayed on the cells of the extremophile, Deinococcus radiodurans. J Hazard Mater 419:126477. https://doi.org/10.1016/j.jhazmat.2021.126477

    Article  CAS  Google Scholar 

  100. Moalic Y, Hartunians J, Dalmasso C, Courtine D, Georges M, Oger P, Shao Z, Jebbar M, Alain K (2021) The piezo-hyperthermophilic archaeon Thermococcus piezophilus regulates its energy efficiency system to cope with large hydrostatic pressure variations. Front Microbiol 12:730231. https://doi.org/10.3389/fmicb.2021.730231

    Article  Google Scholar 

  101. Montañez-Barragán B, Sanz-Martín JL, Gutiérrez-Macías P, Morato-Cerro A, Rodríguez-Vázquez R, Barragán-Huerta BE (2020) Azo dyes decolorization under high alkalinity and salinity conditions by Halomonas sp. in batch and packed bed reactor. Extremophiles 24:239–247. https://doi.org/10.1007/s00792-019-01149-w

    Article  CAS  Google Scholar 

  102. Muggia L, Ametrano CG, Sterflinger K, Tesei D (2020) An overview of genomics, phylogenomics and proteomics approaches in Ascomycota. Life 10(12):356. https://doi.org/10.3390/life10120356

    Article  CAS  Google Scholar 

  103. Mukherjee S, Sarkar B, Aralappanavar VK, Mukhopadhyay R, Basak BB, Srivastava P, Marchut-Mikołajczyk O, Bhatnagar A, Semple KT, Bolan N (2022) Biochar-microorganism interactions for organic pollutant remediation: challenges and perspectives. Environ Pollut 308:119609. https://doi.org/10.1016/j.envpol.2022.119609

    Article  CAS  Google Scholar 

  104. Nachana’a Timothy ETW (2019) Environmental pollution by heavy metal: an overview. Int J Environ Chem 3(2):72–82. https://doi.org/10.11648/j.ijec.20190302.14

    Article  Google Scholar 

  105. Naija A, Yalcin HC (2023) Evaluation of cadmium and mercury on cardiovascular and neurological systems: effects on humans and fish. Toxicol Rep. https://doi.org/10.1016/j.toxrep.2023.04.009

  106. Najjari A, Stathopoulou P, Elmnasri K, Hasnaoui F, Zidi I, Sghaier H, Ouzari HI, Cherif A, Tsiamis G (2021) Assessment of 16S rRNA gene-based phylogenetic diversity of Archaeal communities in halite-crystal salts processed from natural Saharan saline systems of southern Tunisia. Biology 10(5):397. https://doi.org/10.3390/biology10050397

    Article  CAS  Google Scholar 

  107. Narayanan M, Ali SS, El-Sheekh M (2023) A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: mechanisms, challenges, and future prospects. J Environ Manage 334:117532. https://doi.org/10.1016/j.jenvman.2023.117532

    Article  CAS  Google Scholar 

  108. Nguyen TQ, Sesin V, Kisiala A, Emery RN (2021) Phytohormonal roles in plant responses to heavy metal stress: implications for using macrophytes in phytoremediation of aquatic ecosystems. Environ Toxicol Chem 40:7–22. https://doi.org/10.1002/etc.4909

    Article  CAS  Google Scholar 

  109. Nnaji PT, Morse HR, Adukwu E, Chidugu-Ogborigbo RU (2022) Sponge–microbial symbiosis and marine extremozymes: current issues and prospects. Sustainability 14(12):6984. https://doi.org/10.3390/su14126984

    Article  CAS  Google Scholar 

  110. Novikova PV, Busi SB, Probst AJ, May P, Wilmes P (2023) Functional assignment of gut-specific archaeal proteins in the human gut microbiome. BioRxiv 2023–02. https://doi.org/10.1101/2023.02.01.526569

  111. Obulisamy PK, Mehariya S (2021) Polyhydroxyalkanoates from extremophiles: a review. Bioresour Technol 325:124653. https://doi.org/10.1016/j.biortech.2020.124653

    Article  CAS  Google Scholar 

  112. Ojewumi ME, Okeniyi JO, Ikotun JO, Okeniyi ET, Ejemen VA, Popoola API (2018) Bioremediation: data on Pseudomonas aeruginosa effects on the bioremediation of crude oil polluted soil. Data Br 19:101–113. https://doi.org/10.1016/j.dib.2018.04.102

    Article  Google Scholar 

  113. Omidifar N, Nili-Ahmadabadi A, Nakhostin-Ansari A, Lankarani KB, Moghadami M, Mousavi SM, Hashemi SA, Gholami A, Shokripour M, Ebrahimi Z (2021) The modulatory potential of herbal antioxidants against oxidative stress and heavy metal pollution: plants against environmental oxidative stress. Environ Sci Pollut Res 1:11. https://doi.org/10.1007/s11356-021-16530-6

    Article  CAS  Google Scholar 

  114. Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, Rojas C, Seeger M (2018) Living at the frontiers of life: extremophiles in Chile and their potential for bioremediation. Front Microbiol 9:2309. https://doi.org/10.3389/fmicb.2018.02309

    Article  Google Scholar 

  115. Parihar J, Bagaria A (2019) The extremes of life and extremozymes: diversity and perspectives. Acta Sci Microbiol 3(1). https://doi.org/10.31080/ASMI.2020.03.0466

  116. Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D (2020) Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Front Microbiol 11:562813. https://doi.org/10.3389/fmicb.2020.562813

    Article  Google Scholar 

  117. Pfeiffer F, Losensky G, Marchfelder A, Habermann B, Dyall-Smith M (2020) Whole-genome comparison between the type strain of Halobacterium salinarum (DSM 3754T) and the laboratory strains R1 and NRC-1. Microbiologyopen 9(2):e974. https://doi.org/10.1002/mbo3.974

    Article  CAS  Google Scholar 

  118. Pham VHT, Kim J, Chang S, Bang D (2023) Investigating bio-inspired degradation of toxic dyes using potential multi-enzyme producing extremophiles. Microorganisms 11(5):1273. https://doi.org/10.3390/microorganisms11051273

    Article  CAS  Google Scholar 

  119. Pham VHT, Kim J, Chang S, Chung W (2022) Bacterial biosorbents, an efficient heavy metals green clean-up strategy: prospects, challenges, and opportunities. Microorganisms 10(3):610. https://doi.org/10.3390/microorganisms10030610

    Article  CAS  Google Scholar 

  120. Pinheiro LRS, Gradíssimo DG, Xavier LP, Santos AV (2022) Degradation of azo dyes: bacterial potential for bioremediation. Sustainability 14(3):1510. https://doi.org/10.3390/su14031510

    Article  CAS  Google Scholar 

  121. Preethi PS, Hariharan NM, Vickram S, Rameshpathy M, Manikandan S, Subbaiya R, Karmegam N, Yadav V, Ravindran B, Chang SW, Awasthi MK (2022) Advances in bioremediation of emerging contaminants from industrial wastewater by oxidoreductase enzymes. Bioresour Technol 359:127444. https://doi.org/10.1016/j.biortech.2022.127444

    Article  CAS  Google Scholar 

  122. Puopolo R, Gallo G, Mormone A, Limauro D, Contursi P, Piochi M, Bartolucci S, Fiorentino G (2020) Identification of a new heavy-metal-resistant strain of Geobacillus stearothermophilus isolated from a hydrothermally active volcanic area in southern Italy. Int J Environ Res Public Health 17(8):2678. https://doi.org/10.3390/ijerph17082678

    Article  CAS  Google Scholar 

  123. Rafeeq H, Afsheen N, Rafique S, Arshad A, Intisar M, Hussain A, Bilal M, Iqbal HM (2023) Genetically engineered microorganisms for environmental remediation. Chemosphere 310:136751. https://doi.org/10.1016/j.chemosphere.2022.136751

    Article  CAS  Google Scholar 

  124. Rajagopalan S, Landrigan PJ (2021) Pollution and the heart. NEJM 385(20):1881–1892. https://doi.org/10.1056/NEJMra2030281

    Article  CAS  Google Scholar 

  125. Rambabu K, Banat F, Pham QM, Ho SH, Ren NQ, Show PL (2020) Biological remediation of acid mine drainage: review of past trends and current outlook. Environ Sci Technol 2:100024. https://doi.org/10.1016/j.ese.2020.100024

    Article  CAS  Google Scholar 

  126. Ranjan R, Rai R, Bhatt SB, Dhar P (2023) Technological road map of cellulase: a comprehensive outlook to structural, computational, and industrial applications. Biochem Eng J 198:109020. https://doi.org/10.1016/j.bej.2023.109020

    Article  CAS  Google Scholar 

  127. Rastädter K, Wurm DJ, Spadiut O, Quehenberger J (2020) The cell membrane of Sulfolobus spp.—homeoviscous adaption and biotechnological applications. Int J Mol Sci 21(11):3935. https://doi.org/10.3390/ijms21113935

    Article  CAS  Google Scholar 

  128. Razzak SA, Faruque MO, Alsheikh Z, Alsheikhmohamad L, Alkuroud D, Alfayez A, Hossain SZ, Hossain MM (2022) A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ Adv 7:100168. https://doi.org/10.1016/j.envadv.2022.100168

    Article  CAS  Google Scholar 

  129. Rizzo C, Arcadi E, Calogero R, Sciutteri V, Consoli P, Esposito V, Canese S, Andaloro F, Romeo T (2022) Ecological and biotechnological relevance of Mediterranean hydrothermal vent systems. Minerals 2(2):251. https://doi.org/10.3390/min12020251

    Article  CAS  Google Scholar 

  130. Rizzo C, Lo Giudice A (2020) The variety and inscrutability of polar environments as a resource of biotechnologically relevant molecules. Microorganisms 8(9):1422. https://doi.org/10.3390/microorganisms8091422

    Article  CAS  Google Scholar 

  131. Ruan W, Hu J, Qi J, Hou Y, Zhou C, Wei X (2019) Removal of dyes from wastewater by nanomaterials: a review. Adv Mater Lett 10(1):9–20. https://doi.org/10.5185/amlett.2019.2148

    Article  CAS  Google Scholar 

  132. Sabater C, Villamiel M, Montilla A (2022) Integral use of pectin-rich by-products in a biorefinery context: a holistic approach. Food Hydrocoll 128:107564. https://doi.org/10.1016/j.foodhyd.2022.107564

    Article  CAS  Google Scholar 

  133. Santos SP, Yang Y, Rosa MT, Rodrigues MA, De La Tour CB, Sommer S, Teixeira M, Carrondo MA, Cloetens P, Abreu IA, Romão CV (2019) The interplay between Mn and Fe in Deinococcus radiodurans triggers cellular protection during paraquat-induced oxidative stress. Sci Rep 9(1):17217. https://doi.org/10.1038/s41598-019-53140-2

    Article  CAS  Google Scholar 

  134. Saravanan A, Kumar PS, Ramesh B, Srinivasan S (2022) Removal of toxic heavy metals using genetically engineered microbes: molecular tools, risk assessment and management strategies. Chemosphere 298:134341. https://doi.org/10.1016/j.chemosphere.2022.134341

    Article  CAS  Google Scholar 

  135. Saravanan A, Swaminaathan P, Kumar PS, Yaashikaa PR, Kamalesh R, Rangasamy G (2023) A comprehensive review on immobilized microbes-biochar and their environmental remediation: mechanism, challenges and future perspectives. Environ Res 236:116723. https://doi.org/10.1016/j.envres.2023.116723

    Article  CAS  Google Scholar 

  136. Shariq M, Quadir N, Alam A, Zarin S, Sheikh JA, Sharma N, Samal J, Ahmad U, Kumari I, Hasnain SE, Ehtesham NZ (2023) The exploitation of host autophagy and ubiquitin machinery by Mycobacterium tuberculosis in sha** immune responses and host defense during infection. Autophagy 19(1):3–23. https://doi.org/10.1080/15548627.2021.2021495

    Article  CAS  Google Scholar 

  137. Sharma A, Singh RN, Song XP, Singh RK, Guo DJ, Singh P, Verma KK, Li YR (2023) Genome analysis of a halophilic Virgibacillus halodenitrificans ASH revealed salt adaptation, plant growth promotion, and isoprenoid biosynthetic. Front Microbiol 14:2023. https://doi.org/10.3389/fmicb.2023.1229955

    Article  Google Scholar 

  138. Sharma P, Kumar S, Pandey A (2021) Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: a review. J Environ Chem Eng 9(4):105684. https://doi.org/10.1016/j.jece.2021.105684

    Article  CAS  Google Scholar 

  139. Sharma P, Pandey AK, Kim SH, Singh SP, Chaturvedi P, Varjani S (2021) Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environ Technol Innov 24:101826. https://doi.org/10.1016/j.eti.2021.101826

    Article  CAS  Google Scholar 

  140. Shetty SS, Sonkusare S, Naik PB, Madhyastha H (2023) Environmental pollutants and their effects on human health. Heliyon 9(9):e19496. https://doi.org/10.1016/j.heliyon.2023.e19496

    Article  CAS  Google Scholar 

  141. Singh A, Pal DB, Mohammad A, Alhazmi A, Haque S, Yoon T, Srivastava N, Gupta VK (2022) Biological remediation technologies for dyes and heavy metals in wastewater treatment: new insight. Bioresour Technol 343:126154. https://doi.org/10.1016/j.biortech.2021.126154

    Article  CAS  Google Scholar 

  142. Singh RP, Mishra S, Das AP (2020) Synthetic microfibers: pollution toxicity and remediation. Chemosphere 257:127199. https://doi.org/10.1016/j.chemosphere.2020.127199

    Article  CAS  Google Scholar 

  143. Somayaji A, Dhanjal CR, Lingamsetty R, Vinayagam R, Selvaraj R, Varadavenkatesan T, Govarthanan M (2022) An insight into the mechanisms of homeostasis in extremophiles. Microbiol Res 263:127115. https://doi.org/10.1016/j.micres.2022.127115

    Article  CAS  Google Scholar 

  144. Sonone SS, Jadhav S, Sankhla MS, Kumar R (2020) Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett Appl NanoBioScience 10:2148–2166. https://doi.org/10.33263/LIANBS102.21482166

    Article  Google Scholar 

  145. Tanner K, Molina-Menor E, Latorre-Pérez A, Vidal-Verdú À, Vilanova C, Peretó J, Porcar M (2020) Extremophilic microbial communities on photovoltaic panel surfaces: a two-year study. Microb Biotechnol 13(6):1819–1830. https://doi.org/10.1111/1751-7915.13620

    Article  CAS  Google Scholar 

  146. Thorwall S, Schwartz C, Chartron JW, Wheeldon I (2020) Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. Nat Chem Biol 16(2):113–121. https://doi.org/10.1038/s41589-019-0452-x

    Article  CAS  Google Scholar 

  147. Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope CA III, Prada D, Samet J, Thurston G, Cohen A (2020) Outdoor air pollution and cancer: an overview of the current evidence and public health recommendations. CA Cancer J Clin 70(6):460–479. https://doi.org/10.3322/caac.21632

    Article  Google Scholar 

  148. Valdez-Nuñez LF, Rivera-Jacinto MA (2024) Thermophilic bacteria from Peruvian hot springs with high potential application in environmental biotechnology. Environ Technol 45:1420–1435. https://doi.org/10.1080/09593330.2022.2143293

    Article  CAS  Google Scholar 

  149. Vakilchap F, Mousavi SM, Baniasadi M, Farnaud S (2020) Development and evolution of bio cyanidation in metal recovery from solid waste: a review. Rev Environ Sci Biotechnol 19:509–530. https://doi.org/10.1007/s11157-020-09544-y

    Article  CAS  Google Scholar 

  150. Vandrich J, Pfeiffer F, Alfaro-Espinoza G, Kunte HJ (2020) Contribution of mechanosensitive channels to osmoadaptation and ectoine excretion in Halomonas elongata. Extremophiles 24:421–432. https://doi.org/10.1007/s00792-020-01168-y

    Article  CAS  Google Scholar 

  151. Vergara E, Neira G, González C, Cortez D, Dopson M, Holmes DS (2020) Evolution of predicted acid resistance mechanisms in the extremely acidophilic Leptospirillum genus. Genes 11(4):389. https://doi.org/10.3390/genes11040389

    Article  CAS  Google Scholar 

  152. Vivek K, Sandhia GS, Subramaniyan SJBA (2022) Extremophilic lipases for industrial applications: a general review. Biotechnol Adv 60:108002. https://doi.org/10.1016/j.biotechadv.2022.108002

    Article  CAS  Google Scholar 

  153. Volke DC, Orsi E, Nikel PI (2023) Emergent CRISPR–Cas-based technologies for engineering non-model bacteria. Curr Opin Microbiol 75:102353. https://doi.org/10.1016/j.mib.2023.102353

    Article  CAS  Google Scholar 

  154. von Hegner I (2022) Extreme exoworlds and the extremophile paradox. Astrobiology 22(8):926–936. https://doi.org/10.1089/ast.2021.0153

    Article  CAS  Google Scholar 

  155. Waajen AC, Heinz J, Airo A, Schulze-Makuch D (2020) Physicochemical salt solution parameters limit the survival of Planococcus halocryophilus in Martian Cryobrines. Front Microbiol 11:1284. https://doi.org/10.3389/fmicb.2020.01284

    Article  Google Scholar 

  156. Wang B, Xu J, Gao J, Fu X, Han H, Li Z, Wang L, Tian Y, Peng R, Yao Q (2019) Construction of an Escherichia coli strain to degrade phenol completely with two modified metabolic modules. J Hazard Mater 373:29–38. https://doi.org/10.1016/j.jhazmat.2019.03.055

    Article  CAS  Google Scholar 

  157. Wang L, Luo D, Liu X, Zhu J, Wang F, Li B, Li L (2021) Effects of PM2.5 exposure on reproductive system and its mechanisms. Chemosphere 264:128436. https://doi.org/10.1016/j.chemosphere.2020.128436

    Article  CAS  Google Scholar 

  158. Wang L, Sun Y (2021) Engineering organophosphate hydrolase for enhanced biocatalytic performance: a review. Biochem Eng J 168:107945. https://doi.org/10.1016/j.bej.2021.107945

    Article  CAS  Google Scholar 

  159. Wiener EA, LeFevre GH (2022) White rot fungi produce novel tire wear compound metabolites and reveal underappreciated amino acid conjugation pathways. Environ Sci Technol Lett 9(5):391–399. https://doi.org/10.1021/acs.estlett.2c00114

    Article  CAS  Google Scholar 

  160. Wu C, Li F, Yi S, Ge F (2021) Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: advances and ecological risk assessment. J Environ Manage 296:113185. https://doi.org/10.1016/j.jenvman.2021.113185

    Article  CAS  Google Scholar 

  161. **ao Z, Jiang W, Chen D, Xu Y (2020) Bioremediation of typical chlorinated hydrocarbons by microbial reductive dechlorination and its key players: a review. Ecotoxicol Environ Saf 202:110925. https://doi.org/10.1016/j.ecoenv.2020.110925

    Article  CAS  Google Scholar 

  162. Xu L, Wu YH, Zhou P, Cheng H, Liu Q, Xu XW (2018) Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis. BMC Genom 19:1–9. https://doi.org/10.1186/s12864-018-4789-4

    Article  CAS  Google Scholar 

  163. Xu R, Wu K, Han H, Ling Z, Chen Z, Liu P, Tian F, Zafar Y, Malik K, Li X (2018) Co-expression of YieF and PhoN in Deinococcus radiodurans R1 improves uranium bioprecipitation by reducing chromium interference. Chemosphere 211:1156–1165. https://doi.org/10.1016/j.chemosphere.2018.08.061

    Article  CAS  Google Scholar 

  164. Xu S, Xu R, Nan Z, Chen P (2019) Bioadsorption of arsenic from aqueous solution by the extremophilic bacterium Acidithiobacillus ferrooxidans DLC-5. Biocatal Biotransformation 37(1):35–43. https://doi.org/10.1080/10242422.2018.1447566

    Article  CAS  Google Scholar 

  165. Yadav P, Sharma S, Bhattarai T, Sreerama L, Prasad GS, Sahni G, Maharjan J (2021) Whole-genome sequence data analysis of Anoxybacillus kamchatkensis NASTPD13 isolated from hot spring of Myagdi, Nepal. Biomed Res Int 2021. https://doi.org/10.1155/2021/1869748

  166. Yang J, Zhang J, Zhu Z, Du G (2021) The challenges and prospects of Escherichia coli as an organic acid production host under acid stress. Appl Microbiol Biotechnol 105:1–17. https://doi.org/10.1007/s00253-021-11577-4

    Article  CAS  Google Scholar 

  167. Younas F, Mustafa A, Farooqi ZUR, Wang X, Younas S, Mohy-Ud-Din W, Ashir Hameed M, Mohsin Abrar M, Maitlo AA, Noreen S, Hussain MM (2021) Current and emerging adsorbent technologies for wastewater treatment: trends, limitations, and environmental implications. Water 13(2):215. https://doi.org/10.3390/w13020215

    Article  CAS  Google Scholar 

  168. Yusoff DF, Raja Abd Rahman RNZ, Masomian M, Ali MSM, Leow TC (2020) Newly isolated alkane hydroxylase and lipase producing Geobacillus and Anoxybacillus species involved in crude oil degradation. Catalysts 10(8):851. https://doi.org/10.3390/catal10080851

    Article  CAS  Google Scholar 

  169. Zan S, Lv J, Li Z, Cai Y, Wang Z, Wang J (2021) Genomic insights into Pseudoalteromonas sp. JSTW co** with petroleum-heavy metals combined pollution. J Basic Microbiol 61(10):947–957. https://doi.org/10.1002/jobm.202100156

    Article  CAS  Google Scholar 

  170. Zhang L, Lin Y, Yi X, Huang W, Hu Q, Zhang Z, Wu F, Ye JW, Chen GQ (2023) Engineering low-salt growth Halomonas Bluephagenesis for cost-effective bioproduction combined with adaptive evolution. Metab Eng 79:146–158. https://doi.org/10.1016/j.ymben.2023.08.001

    Article  CAS  Google Scholar 

  171. Zhang M, Liu T, Wang G, Buckley JP, Guallar E, Hong X, Wang MC, Wills-Karp M, Wang X, Mueller NT (2021) In utero exposure to heavy metals and trace elements and childhood blood pressure in a US urban, low-income, minority birth cohort. Environ Health Perspect 129(6):067005. https://doi.org/10.1289/EHP8325

    Article  CAS  Google Scholar 

  172. Zhu Y, Wang Y, He X, Li B, Du S (2023) Plant growth-promoting rhizobacteria: a good companion for heavy metal phytoremediation. Chemosphere 338:139475. https://doi.org/10.1016/j.chemosphere.2023.1394

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Pavithra Swaminaathan: Validation; Resources and Writing – review &; editing.

A Saravanan: Validation; Supervision; Writing – review &; editing.

P R Yaashikaa: Data Curation; Formal analysis; Resources.

Corresponding author

Correspondence to A. Saravanan.

Ethics declarations

Ethics Approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swaminaathan, P., Shaji, A., Saravanan, A. et al. Innovative Approaches in Extremophile-Mediated Remediation of Toxic Pollutants: A Comprehensive Review. Water Conserv Sci Eng 9, 39 (2024). https://doi.org/10.1007/s41101-024-00274-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41101-024-00274-8

Keywords

Navigation