Log in

Sustainable use of silica fume in green cement concrete production: a review

  • Technical Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Materials, like geopolymer concrete, zero-waste, and circular economy paradigm, can be used to safeguard finite natural resources, lower CO2 emissions, and manage climate change. It completely replaces Portland cement with waste industrial products such as slag, metakaolin, silica fume, coal ash, and fly ash which is available; it can also be much stronger and perform better than traditional concrete. This study is about silica fume (SF) which is used in geopolymer concrete, silica fume an extremely pozzolanic substance, a ferrosilicon industry by-product is used to enhance the mechanical and endurance characteristics of concrete. It could be combined with silica dust and Portland cement or put directly as an element to concrete. This article discusses silica fume’s physical and chemical properties as well as the nature of its reaction. The outcomes demonstrated a significant improvement in the mechanical qualities of concrete when SF was used in its place. The assessment also provided a quick estimate of the proportion of SF replacement for both regular and high-strength concretes. In it, silica fume’s impact on concrete’s workability, flexural tensile strength, divided tensile strength, compressive strength, water absorption or porosity, modulus of elasticity, shrinkage, density or creep, and microstructure analysis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAS:

Amorphous aluminium silicate

AAS:

Alkali-activated slag

C-S-H:

Calcium silicate hydrate gel

GPC:

Geopolymer concrete

GSF:

Granulated silica fume

HSC:

High-strength concrete

HPC:

High-performance concrete

MR:

Rupture modulus

NA:

Natural aggregate

OPC:

Ordinary Portland cement

RPC’s:

Reactive powder concrete

RA:

Recycled aggregate

SCC:

Self-compacting concrete

SF:

Silica fume

UHPC:

Ultra-high-performance concrete

w/c ratio:

Water/cement ratio

References

  1. Zaid O, Ahmad J, Siddique MS, Aslam F, Alabduljabbar H, Khedher KM (2021) A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate. Sci Rep 11(1):1–14. https://doi.org/10.1038/s41598-021-92228-6

    Article  Google Scholar 

  2. Bameri M, Rashidi S, Mohammadhasani M, Maghsoudi M, Madani H, Rahmani F (2022) Evaluation of mechanical and durability properties of eco-friendly concrete containing silica fume, waste glass powder, and ground granulated blast furnace slag. Adv Mater Sci Eng. https://doi.org/10.1155/2022/2730391

    Article  Google Scholar 

  3. Tripathi D, Kumar R, Mehta PK, Singh A (2020) Silica fume mixed concrete in acidic environment. Mater Today Proc 27:1001–1005. https://doi.org/10.1016/j.matpr.2020.01.311

    Article  Google Scholar 

  4. Sruthi V, George EH (2017) A review on silica fume–An additive in concrete. Int J Inno Res Sci 3(3): 1–15. www.ijariie.com

  5. Saba AM et al (2021) Strength and flexural behavior of steel fiber and silica fume incorporated self-compacting concrete. J Mater Res Technol 12:1380–1390. https://doi.org/10.1016/j.jmrt.2021.03.066

    Article  Google Scholar 

  6. Imam A, Kumar V, Srivastava V (2018) Review study towards effect of Silica Fume on the fresh and hardened properties of concrete. Adv Concr Constr 6(2):145–157. https://doi.org/10.12989/acc.2018.6.2.145

    Article  Google Scholar 

  7. Singh S, AnshumanTiwari RN, Agrawal V (2016) Feasibility as a potential substitute for natural sand: a comparative study between granite cutting waste and marble slurry. Procedia Environ Sci 35:571–582. https://doi.org/10.1016/j.proenv.2016.07.042

    Article  Google Scholar 

  8. Bhanja S, Sengupta B (2005) Influence of silica fume on the tensile strength of concrete. Cem Concr Res 35(4):743–747. https://doi.org/10.1016/j.cemconres.2004.05.024

    Article  Google Scholar 

  9. Alla S, Jayaram M, Asadi SS (2021) An experimental investigation for replacements of river sand and cement with Robosand, fly-ash and silica fume in concrete to evaluate the influence in durability properties. Mater Today Proc 43:954–961. https://doi.org/10.1016/j.matpr.2020.07.340

    Article  Google Scholar 

  10. Khan MI, Siddique R (2011) Utilization of silica fume in concrete: review of durability properties. Resour Conserv Recycl 57:30–35. https://doi.org/10.1016/j.resconrec.2011.09.016

    Article  Google Scholar 

  11. Toutanji HA, Bayasi Z (1999) Effect of curing procedures on properties of silica fume concrete. Cem Concr Res 29(4):497–501. https://doi.org/10.1016/S0008-8846(98)00197-5

    Article  Google Scholar 

  12. Al-Amoudi OSB, Maslehuddin M, Abiola TO (2004) Effect of type and dosage of silica fume on plastic shrinkage in concrete exposed to hot weather. Constr Build Mater 18(10):737–743. https://doi.org/10.1016/j.conbuildmat.2004.04.031

    Article  Google Scholar 

  13. Sasanipour H, Aslani F, Taherinezhad J (2019) Effect of silica fume on durability of self-compacting concrete made with waste recycled concrete aggregates. Constr Build Mater 227:116598. https://doi.org/10.1016/j.conbuildmat.2019.07.324

    Article  Google Scholar 

  14. Garg R, Garg R (2021) Performance evaluation of polypropylene fiber waste reinforced concrete in presence of silica fume. Mater Today Proc 43:809–816. https://doi.org/10.1016/j.matpr.2020.06.482

    Article  Google Scholar 

  15. Bajpai R, Choudhary K, Srivastava A, Sangwan KS, Singh M (2020) Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J Clean Prod 254:120147. https://doi.org/10.1016/j.jclepro.2020.120147

    Article  Google Scholar 

  16. Akarsh PK, Marathe S, Bhat AK (2021) Influence of graphene oxide on properties of concrete in the presence of silica fumes and M-sand. Constr Build Mater 268:121093

    Article  Google Scholar 

  17. Dotto JMR, De Abreu AG, Dal Molin DCC, Müller IL (2004) Influence of silica fume addition on concretes physical properties and on corrosion behaviour of reinforcement bars. Cem Concr Compos 26(1):31–39. https://doi.org/10.1016/S0958-9465(02)00120-8

    Article  Google Scholar 

  18. Yazici H (2008) The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze-thaw resistance of self-compacting concrete. Constr Build Mater 22(4):456–462. https://doi.org/10.1016/j.conbuildmat.2007.01.002

    Article  Google Scholar 

  19. Demirel B, Keleştemur O (2010) Effect of elevated temperature on the mechanical properties of concrete produced with finely ground pumice and silica fume. Fire Saf J 45(6–8):385–391. https://doi.org/10.1016/j.firesaf.2010.08.002

    Article  Google Scholar 

  20. Giner VT, Ivorra S, Baeza FJ, Zornoza E, Ferrer B (2011) Silica fume admixture effect on the dynamic properties of concrete. Constr Build Mater 25(8):3272–3277. https://doi.org/10.1016/j.conbuildmat.2011.03.014

    Article  Google Scholar 

  21. Sobhani J, Najimi M (2013) Electrochemical impedance behavior and transport properties of silica fume contained concrete. Constr Build Mater 47:910–918. https://doi.org/10.1016/j.conbuildmat.2013.05.010

    Article  Google Scholar 

  22. Moghadam MA, Izadifard RA (2020) Effects of zeolite and silica fume substitution on the microstructure and mechanical properties of mortar at high temperatures. Constr Build Mater 253:119206. https://doi.org/10.1016/j.conbuildmat.2020.119206

    Article  Google Scholar 

  23. Kooshafar M, Madani H (2020) An investigation on the influence of nano silica morphology on the characteristics of cement composites. J Build Eng 30:101293. https://doi.org/10.1016/j.jobe.2020.101293

    Article  Google Scholar 

  24. Boukhelf F, Cherif R, Trabelsi A, Belarbi R, Bouiadjra MB (2021) On the hygrothermal behavior of concrete containing glass powder and silica fume. J Clean Prod 318:128647. https://doi.org/10.1016/j.jclepro.2021.128647

    Article  Google Scholar 

  25. Copetti CM, Borges PM, Squiavon JZ, da Silva SR, de Oliveira Andrade JJ (2020) Evaluation of tire rubber surface pre-treatment and silica fume on physical-mechanical behavior and microstructural properties of concrete. J Clean Prod 256:120670. https://doi.org/10.1016/j.jclepro.2020.120670

    Article  Google Scholar 

  26. Mazloom M, Ramezanianpour AA, Brooks JJ (2004) Effect of silica fume on mechanical properties of high-strength concrete. Cem Concr Compos 26(4):347–357. https://doi.org/10.1016/S0958-9465(03)00017-9

    Article  Google Scholar 

  27. Okoye FN, Durgaprasad J, Singh NB (2016) Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceram Int 42(2):3000–3006. https://doi.org/10.1016/j.ceramint.2015.10.084

    Article  Google Scholar 

  28. Uday M, Tech BM (2017) Durability properties of geopolymer concrete using silica fume for M 60 Grade. Int J Emerg Technol Eng Res 5(10):141–153. www.ijeter.everscience.org

  29. Sobolev K (2004) The development of a new method for the proportioning of high-performance concrete mixtures. Cem Concr Compos 26(7):901–907. https://doi.org/10.1016/j.cemconcomp.2003.09.002

    Article  Google Scholar 

  30. Wong HS, Razak HA (2005) Efficiency of calcined kaolin and silica fume as cement replacement material for strength performance. Cem Concr Res 35(4):696–702. https://doi.org/10.1016/j.cemconres.2004.05.051

    Article  Google Scholar 

  31. Tanyildizi H, Coskun A (2008) Performance of lightweight concrete with silica fume after high temperature. Constr Build Mater 22(10):2124–2129. https://doi.org/10.1016/j.conbuildmat.2007.07.017

    Article  Google Scholar 

  32. Aydin S, Baradan B (2013) The effect of fiber properties on high performance alkali-activated slag/silica fume mortars. Compos Part B Eng 45(1):63–69. https://doi.org/10.1016/j.compositesb.2012.09.080

    Article  Google Scholar 

  33. Dilbas H, Şimşek M, Çakır Ö (2014) An investigation on mechanical and physical properties of recycled aggregate concrete (RAC) with and without silica fume. Constr Build Mater 61:50–59. https://doi.org/10.1016/j.conbuildmat.2014.02.057

    Article  Google Scholar 

  34. Çakır Ö, Sofyanlı ÖÖ (2015) Influence of silica fume on mechanical and physical properties of recycled aggregate concrete. HBRC J 11(2):157–166. https://doi.org/10.1016/j.hbrcj.2014.06.002

    Article  Google Scholar 

  35. Wu Z, Shi C, Khayat KH (2016) Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). Cem Concr Compos 71:97–109. https://doi.org/10.1016/j.cemconcomp.2016.05.005

    Article  Google Scholar 

  36. Bani R, Joshaghani A, Hooton RD (2017) Workability retention and compressive strength of self-compacting concrete incorporating pumice powder and silica fume. Constr Build Mater 134:116–122. https://doi.org/10.1016/j.conbuildmat.2016.12.090

    Article  Google Scholar 

  37. Karein SMM, Ramezanianpour AA, Ebadi T, Isapour S, Karakouzian M (2017) A new approach for application of silica fume in concrete: wet granulation. Constr Build Mater 157:573–581. https://doi.org/10.1016/j.conbuildmat.2017.09.132

    Article  Google Scholar 

  38. Gruszczyński M, Lenart M (2019) Durability of mortars modified with the addition of amorphous aluminum silicate and silica fume. Theor Appl Fract Mech 107:2020. https://doi.org/10.1016/j.tafmec.2020.102526

    Article  Google Scholar 

  39. Rao AK, Kumar DR (2020) Comparative study on the behaviour of GPC using silica fume and fly ash with GGBS exposed to elevated temperature and ambient curing conditions. Mater Today Proc 27:1833–1837. https://doi.org/10.1016/j.matpr.2020.03.789

    Article  Google Scholar 

  40. Ardalan RB, Joshaghani A, Hooton RD (2017) Workability retention and compressive strength of self-compacting concrete incorporating pumice powder and silica fume. Constr Build Mater 134:116–122. https://doi.org/10.1016/j.conbuildmat.2016.12.090

    Article  Google Scholar 

  41. Wu Z, Khayat KH, Shi C (2019) Changes in rheology and mechanical properties of ultra-high performance concrete with silica fume content. Cem Concr Res 123:105786. https://doi.org/10.1016/j.cemconres.2019.105786

    Article  Google Scholar 

  42. Das SK, Mustakim SM, Adesina A, Mishra J, Alomayri TS, Assaedi HS, Kaze CR (2020) Fresh, strength and microstructure properties of geopolymer concrete incorporating lime and silica fume as replacement of fly ash. J Build Eng 32:101780. https://doi.org/10.1016/j.jobe.2020.101780

    Article  Google Scholar 

  43. Thesarajan KNR, Subbaraj L, Priyavarshiny R, Parvathy NA (2020) Experimental investigation on partial replacement of silica fume and copper slag in concrete. Int J App Eng Res 15(4): 409–414. http://www.ripublication.com

  44. Shahmansouri AA, Nematzadeh M, Behnood A (2021) Mechanical properties of GGBFS-based geopolymer concrete incorporating natural zeolite and silica fume with an optimum design using response surface method. J Build Eng 36:102138. https://doi.org/10.1016/j.jobe.2020.102138

    Article  Google Scholar 

  45. Köksal F, Altun F, Yiǧit I, Şahin Y (2008) Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Constr Build Mater 22(8):1874–1880. https://doi.org/10.1016/j.conbuildmat.2007.04.017

    Article  Google Scholar 

  46. Abdellatief M, AL-Tam SM, Elemam WE, Alanazi H, Elgendy GM, Tahwia AM (2023) Development of ultra-high-performance concrete with low environmental impact integrated with metakaolin and industrial wastes. Case Stud Constr Mater 18:e01724. https://doi.org/10.1016/j.cscm.2022.e01724

    Article  Google Scholar 

  47. Amudhavalli NK, Mathew J (2016) Thesis Study 3(1):28–35

  48. Dong W, Li W, Guo Y, He X, Sheng D (2020) Effects of silica fume on physicochemical properties and piezoresistivity of intelligent carbon black-cementitious composites. Constr Build Mater 259:120399. https://doi.org/10.1016/j.conbuildmat.2020.120399

    Article  Google Scholar 

  49. Gleize PJP, Müller A, Roman HR (2003) Microstructural investigation of a silica fume-cement-lime mortar. Cem Concr Compos 25(2):171–175. https://doi.org/10.1016/S0958-9465(02)00006-9

    Article  Google Scholar 

  50. Ganjian E, Pouya HS (2005) Effect of magnesium and sulfate ions on durability of silica fume blended mixes exposed to the seawater tidal zone. Cem Concr Res 35(7):1332–1343. https://doi.org/10.1016/j.cemconres.2004.09.028

    Article  Google Scholar 

  51. Güneyisi E, Gesoǧlu M, Özturan T (2004) Properties of rubberized concretes containing silica fume. Cem Concr Res 34(12):2309–2317. https://doi.org/10.1016/j.cemconres.2004.04.005

    Article  Google Scholar 

  52. Tazawa E, Miyazawa S (1997) Influence of constituents and composition on autogenous shrinkage of cementitious materials. Mag Concr Res 48(5):15–22. https://doi.org/10.1680/macr.1997.49.178.15

    Article  Google Scholar 

  53. Al-Amoudi OSB, Abiola TO, Maslehuddin M (2006) Effect of superplasticizer on plastic shrinkage of plain and silica fume cement concretes. Constr Build Mater 20(9):642–647. https://doi.org/10.1016/j.conbuildmat.2005.02.024

    Article  Google Scholar 

  54. Matalkah F, Salem T, Shaafaey M, Soroushian P (2019) Drying shrinkage of alkali activated binders cured at room temperature. Constr Build Mater 201:563–570. https://doi.org/10.1016/j.conbuildmat.2018.12.223

    Article  Google Scholar 

  55. Khatri RP, Sirivivatnanon V (1995) Effect of different supplementary cementitious materials on mechanical. Cem Concr Res 25(1):209–220

    Article  Google Scholar 

  56. Tao Z, Weizu Q (2006) Tensile creep due to restraining stresses in high-strength concrete at early ages. Cem Concr Res 36(3):584–591. https://doi.org/10.1016/j.cemconres.2005.11.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilesh Gautam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the author.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chishi, A.K., Gautam, L. Sustainable use of silica fume in green cement concrete production: a review. Innov. Infrastruct. Solut. 8, 195 (2023). https://doi.org/10.1007/s41062-023-01164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-023-01164-z

Keywords

Navigation