Log in

Potential utilization of industrial effluents in ternary blended geopolymer concrete for future sustainable environment

  • Technical Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Geopolymer concrete (GPC) is a sustainable building material for construction that is created by manufacturing concrete from industrial leftovers using an alkaline solution. The study analyzes ternary blended GPC’s microstructure, workability, and mechanical properties. Green concrete is obtained by blending with fly ash, GGBS & metakaolin, comprising alumina and silica as significant compounds. The slump and compaction factor tests evaluate the fresh property of ternary blended geopolymer concrete and mechanical properties by split tensile, compressive, and flexure strength tests. The geopolymer concrete’s microstructure properties are studied using SEM, EDS, and XRD tests. The test results divulged that an increase in the volume of fibers decreases the workability of concrete. Concrete produced by adding 60% fly ash, 25% GGBS, and 15% metakaolin yielded the maximum strength compared to the other concrete mixes. Microstructure images revealed that the GPC mix possesses a high calcium content, compact, homogenous mixture, and effective dissolution of Si & Al in an alkaline solution is mainly responsible for the strength attainment. Thus, due to the usage of industrial byproducts, ternary blended GPC solves environmental issues proving to be economical and futuristic material to produce sustainable green concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

It will be available based on reasonable request to the corresponding author.

Abbreviations

Al:

Aluminum

C–S–H:

Calcium silicate hydrate

EDS:

Energy-Dispersive-Spectroscopy

GPC:

Geopolymer concrete

GHG:

Greenhouse gases

GGBS:

Ground granulated blast furnace slag

N–A–S–H:

Sodium silicate hydrate

SEM:

Scanning electron microscope

Si:

Silica

XRD:

X-ray diffraction

References

  1. Ahmad F, Saeed Q, Shah SMU, Gondal MA, Mumtaz S (2022) Environmental sustainability: challenges and approaches. Nat Resour Conserv Adv Sustain. https://doi.org/10.1016/B978-0-12-822976-7.00019-3

    Article  Google Scholar 

  2. Borgaonkar NK, Bhargava C, Kushwaha A (2022) Fidelity of NGOs toward zero waste in India: a conceptual framework for sustainability. Emerg Trends Approach Zero Waste. https://doi.org/10.1016/B978-0-323-85403-0.00016-5

    Article  Google Scholar 

  3. Mondal S, Palit D (2022) Challenges in natural resource management for ecological sustainability. Nat Resour Conserv Adv Sustain. https://doi.org/10.1016/B978-0-12-822976-7.00004-1

    Article  Google Scholar 

  4. Boukhelkhal D, Guendouz M, Bourdot A, Cheriet H, Messaoudi K (2021) Elaboration of bio-based building materials made from recycled olive core. MRS Energy Sustain 8:98–109. https://doi.org/10.1557/s43581-021-00006-8

    Article  Google Scholar 

  5. Al Biajawi MI, Embong R, Muthusamy K, Ismail N, Obianyo II (2022) Recycled coal bottom ash as sustainable materials for cement replacement in cementitious composites—a review. Constr Build Mater 338:127624. https://doi.org/10.1016/J.CONBUILDMAT.2022.127624

    Article  Google Scholar 

  6. Song F, Mehedi H, Liang C, Meng J, Chen Z, Shi F (2021) Review of transition paths for coal-fired power plants. Glob Energy Interconnect 4:354–370. https://doi.org/10.1016/J.GLOEI.2021.09.007

    Article  Google Scholar 

  7. Ranjetha K, Alengaram UJ, Alnahhal AM, Karthick S, Zurina WJW, Rao KJ (2022) Towards sustainable construction through the application of low carbon footprint products. Mater Today Proc 52:873–881. https://doi.org/10.1016/J.MATPR.2021.10.275

    Article  Google Scholar 

  8. Guendouz M, Boukhelkhal D, Bourdot A (2021) Recycling of floor tile waste as fine aggregate in flowable sand concrete BT - advances in green energies and materials technology. In: Chiba Y, Tlemçani A, Smaili A (Eds), Springer, Singapore, pp 223–229

  9. Bengal SN, Pammar LS, Nayak CB (2022) Engineering application of organic materials with concrete—a review. Mater Today Proc 56:581–586. https://doi.org/10.1016/j.matpr.2022.02.390

    Article  Google Scholar 

  10. Duarah P, Haldar D, Patel AK, Di Dong C, Singhania RR, Purkait MK (2022) A review on global perspectives of sustainable development in bioenergy generation. Bioresour Technol 348:126791. https://doi.org/10.1016/J.BIORTECH.2022.126791

    Article  Google Scholar 

  11. Awasthi MK, Sarsaiya S, Chen H, Wang Q, Wang M, Awasthi SK, Li J, Liu T, Pandey A, Zhang Z (2019) Global status of waste-to-energy technology. Curr Dev Biotechnol Bioeng Waste Treat Process Energy Gener. https://doi.org/10.1016/B978-0-444-64083-3.00003-8

    Article  Google Scholar 

  12. Karimaei M, Dabbaghi F, Sadeghi-Nik A, Dehestani M (2020) Mechanical performance of green concrete produced with untreated coal waste aggregates. Constr Build Mater 233:117264. https://doi.org/10.1016/j.conbuildmat.2019.117264

    Article  Google Scholar 

  13. Vaz S, Rodrigues de Souza AP, Lobo Baeta BE (2022) Technologies for carbon dioxide capture—a review applied to energy sectors. Clean Eng Technol 8:100456. https://doi.org/10.1016/J.CLET.2022.100456

    Article  Google Scholar 

  14. Zhang L, Mabee WE (2016) Comparative study on the life-cycle greenhouse gas emissions of the utilization of potential low carbon fuels for the cement industry. J Clean Prod 122:102–112. https://doi.org/10.1016/J.JCLEPRO.2016.02.019

    Article  Google Scholar 

  15. Hache E, Simoën M, Seck GS, Bonnet C, Jabberi A, Carcanague S (2020) The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios. Int Econ 163:114–133. https://doi.org/10.1016/J.INTECO.2020.05.002

    Article  Google Scholar 

  16. Manjunatha M, Seth D, Balaji KV, Bharath A (2022) Engineering properties and environmental impact assessment of green concrete prepared with PVC waste powder: a step towards sustainable approach. Case Stud Constr Mater 17:e01404. https://doi.org/10.1016/j.cscm.2022.e01404

    Article  Google Scholar 

  17. Reshma TV, Manjunatha M, Sankalpasri S, Tanu HM (2021) Effect of waste foundry sand and fly ash on mechanical and fresh properties of concrete. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.12.821

    Article  Google Scholar 

  18. Memiş S, Bılal MAM (2022) Taguchi optimization of geopolymer concrete produced with rice husk ash and ceramic dust. Environ Sci Pollut Res 29:15876–15895. https://doi.org/10.1007/s11356-021-16869-w

    Article  Google Scholar 

  19. Sabour MR, Derhamjani G, Akbari M (2022) Mechanical, durability properties, and environmental assessment of geopolymer mortars containing waste foundry sand. Environ Sci Pollut Res 29:24322–24333. https://doi.org/10.1007/s11356-021-17692-z

    Article  Google Scholar 

  20. Mohamed G, Djamila B (2018) Properties of dune sand concrete containing coffee waste. MATEC Web Conf 149:1039. https://doi.org/10.1051/matecconf/201814901039

    Article  Google Scholar 

  21. Shobeiri V, Bennett B, **e T, Visintin P (2021) A comprehensive assessment of the global warming potential of geopolymer concrete. J Clean Prod 297:126669. https://doi.org/10.1016/J.JCLEPRO.2021.126669

    Article  Google Scholar 

  22. Guendouz M, Debieb F, Boukendakdji O, Kadri EH, Bentchikou M, Soualhi H (2016) Use of plastic waste in sand concrete. J Mater Environ Sci 7:382–389

    Google Scholar 

  23. Benimam S, Debieb F, Bentchikou M, Guendouz M (2014) Valorisation et Recyclage des Déchets Plastiques dans le Béton. MATEC Web Conf 11:5–8. https://doi.org/10.1051/matecconf/20141101033

    Article  Google Scholar 

  24. Danish A, Ozbakkaloglu T, Ali Mosaberpanah M, Salim MU, Bayram M, Yeon JH, Jafar K (2022) Sustainability benefits and commercialization challenges and strategies of geopolymer concrete—a review. J Build Eng 58:105005. https://doi.org/10.1016/J.JOBE.2022.105005

    Article  Google Scholar 

  25. Turner LK, Collins FG (2013) Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater 43:125–130. https://doi.org/10.1016/J.CONBUILDMAT.2013.01.023

    Article  Google Scholar 

  26. Arora S, Jangra P, Lim YY, Pham TM (2022) Strength, durability, and microstructure of self-compacting geopolymer concrete produced with copper slag aggregates. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-22170-1

    Article  Google Scholar 

  27. Ruiz-Santaquiteria C, Fernández-Jiménez A, Palomo A (2016) Alternative prime materials for develo** new cements: alkaline activation of alkali aluminosilicate glasses. Ceram Int 42:9333–9340. https://doi.org/10.1016/j.ceramint.2016.03.111

    Article  Google Scholar 

  28. Venkatesan M, Zaib Q, Shah IH, Park HS (2019) Optimum utilization of waste foundry sand and fly ash for geopolymer concrete synthesis using D-optimal mixture design of experiments. Resour Conserv Recycl 148:114–123. https://doi.org/10.1016/j.resconrec.2019.05.008

    Article  Google Scholar 

  29. Rambabu D, Sharma SK, Abdul Akbar M (2022) A review on suitability of using geopolymer concrete for rigid pavement. Innov Infrastruct Solut 7:286. https://doi.org/10.1007/s41062-022-00878-w

    Article  Google Scholar 

  30. Eisa MS, Fahmy EA, Basiouny ME (2021) Using metakaolin-based geopolymer concrete in concrete pavement slabs. Innov Infrastruct Solut 7:1. https://doi.org/10.1007/s41062-021-00601-1

    Article  Google Scholar 

  31. Nayak CB, Taware PP, Jagadale UT, Jadhav NA, Morkhade SG (2022) Effect of SiO2 and ZnO nano-composites on mechanical and chemical properties of modified concrete. Iran J Sci Technol Trans Civ Eng 46:1237–1247. https://doi.org/10.1007/s40996-021-00694-9

    Article  Google Scholar 

  32. Kuun Reddy SR, BalaMurugan S (2020) Experimental and microstructural assessment of ternary blended geopolymer concrete with different Na2SiO3-to-NaOH volume ratios. Innov Infrastruct Solut. 5:33. https://doi.org/10.1007/s41062-020-0279-z

    Article  Google Scholar 

  33. Ma CK, Awang AZ, Omar W (2018) Structural and material performance of geopolymer concrete: a review. Constr Build Mater 186:90–102. https://doi.org/10.1016/j.conbuildmat.2018.07.111

    Article  Google Scholar 

  34. Sithole NT, Tsotetsi NT, Mashifana T, Sillanpää M (2022) Alternative cleaner production of sustainable concrete from waste foundry sand and slag. J Clean Prod. https://doi.org/10.1016/j.jclepro.2022.130399

    Article  Google Scholar 

  35. Mathew G, Issac BM (2020) Effect of molarity of sodium hydroxide on the aluminosilicate content in laterite aggregate of laterised geopolymer concrete. J Build Eng. 32:101486. https://doi.org/10.1016/j.jobe.2020.101486

    Article  Google Scholar 

  36. Shrivas R, Paramkusam BR, Dwivedi SB (2022) Strength and durability performance of geopolymer binder of ambient cured alkali-activated MSW rejected waste and GGBFS mixes. Environ Sci Pollut Res 29:30521–30536. https://doi.org/10.1007/s11356-021-17547-7

    Article  Google Scholar 

  37. Zanjad N, Pawar S, Nayak C (2022) Use of fly ash cenosphere in the construction Industry: a review. Mater Today Proc 62:2185–2190. https://doi.org/10.1016/j.matpr.2022.03.362

    Article  Google Scholar 

  38. Unnikrishnan THMS (2022) Utilization of industrial and agricultural waste materials for the development of geopolymer concrete—a review. Mater Today Proc 65:1290–1297. https://doi.org/10.1016/j.matpr.2022.04.192

    Article  Google Scholar 

  39. Priyanka M, Muniraj K, Madduru SRC (2021) Influence of geopolymer aggregates on microstructural and strength characteristics of OPC concrete. Innov Infrastruct Solut 7:38. https://doi.org/10.1007/s41062-021-00624-8

    Article  Google Scholar 

  40. Kumar G, Mishra SS (2022) Effect of recycled concrete aggregate on mechanical, physical and durability properties of GGBS–fly ash-based geopolymer concrete. Innov Infrastruct Solut 7:237. https://doi.org/10.1007/s41062-022-00832-w

    Article  Google Scholar 

  41. Lloyd N, Rangan V (2009) Geopolymer concrete - sustainable cementless concrete. Am Concr Institute. ACI Spec Publ. pp 33–53

  42. Pandurangan K, Thennavan M, Muthadhi A (2018) Studies on effect of source of flyash on the bond strength of geopolymer concrete. Mater Today Proc 5:12725–12733. https://doi.org/10.1016/j.matpr.2018.02.256

    Article  Google Scholar 

  43. Kalaivani M, Shyamala G, Ramesh S, Angusenthil K, Jagadeesan R (2020) Performance evaluation of fly ash/slag based geopolymer concrete beams with addition of lime. Mater Today Proc 27:652–656. https://doi.org/10.1016/j.matpr.2020.01.596

    Article  Google Scholar 

  44. Mehsas B, Siline M, Zeghichi L (2022) The effect of using low reactive metakaolin on performances of geopolymer binder. Innov Infrastruct Solut 7:233. https://doi.org/10.1007/s41062-022-00833-9

    Article  Google Scholar 

  45. Refaie FAZ, Abbas R, Fouad FH (2020) Sustainable construction system with Egyptian metakaolin based geopolymer concrete sandwich panels. Case Stud Constr Mater. https://doi.org/10.1016/j.cscm.2020.e00436

    Article  Google Scholar 

  46. **dal BB, Alomayri T, Hasan A, Kaze CR (2022) Geopolymer concrete with metakaolin for sustainability: a comprehensive review on raw material’s properties, synthesis, performance, and potential application. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-17849-w

    Article  Google Scholar 

  47. Natarajan KS, Yacinth SIB, Veerasamy K (2022) Strength and durability characteristics of steel fiber-reinforced geopolymer concrete with addition of waste materials. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-22360-x

    Article  Google Scholar 

  48. Kuranlı ÖF, Uysal M, Abbas MT, Cosgun T, Niş A, Aygörmez Y, Canpolat O, Al-mashhadani MM (2022) Evaluation of slag/fly ash based geopolymer concrete with steel, polypropylene and polyamide fibers. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.126747

    Article  Google Scholar 

  49. Kate GK, Nayak CB, Thakare SB (2021) Optimization of sustainable high-strength–high-volume fly ash concrete with and without steel fiber using Taguchi method and multi-regression analysis. Innov Infrastruct Solut 6:102. https://doi.org/10.1007/s41062-021-00472-6

    Article  Google Scholar 

  50. Nayak CB (2021) Experimental and numerical investigation on compressive and flexural behavior of structural steel tubular beams strengthened with AFRP composites. J King Saud Univ - Eng Sci 33:88–94. https://doi.org/10.1016/j.jksues.2020.02.001

    Article  Google Scholar 

  51. Nayak CB (2021) Experimental and numerical study on reinforced concrete deep beam in shear with crimped steel fiber. Innov Infrastruct Solut 7:41. https://doi.org/10.1007/s41062-021-00638-2

    Article  Google Scholar 

  52. Varadharajan S (2020) Determination of mechanical properties and environmental impact due to inclusion of flyash and marble waste powder in concrete. Structures 25:613–630. https://doi.org/10.1016/j.istruc.2020.03.040

    Article  Google Scholar 

  53. IS:383 (1970) Specification for coarse and fine aggregates from natural sources for concrete. Indian Stand 1–24

  54. Md Khalid S, Shobha MS, Tanu HM, Reshma TV (2021) Ternary blended geo-polymer concrete—a review. In: IOP Conference Series: Earth and Environmental Science, vol 822. https://doi.org/10.1088/1755-1315/822/1/012043.

  55. Khalid S, Reshma TV, Shobha MS, Priyanka G, SatyanarayanaSiriki V (2021) Analysis of strength and durability properties of ternary blended geopolymer concrete. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.08.307

    Article  Google Scholar 

  56. Chithambar Ganesh A, Muthukannan M (2019) Experimental study on the behaviour of hybrid fiber reinforced geopolymer concrete under ambient curing condition. IOP Conf Ser Mater Sci Eng vol 561 pp 0–9. doi:https://doi.org/10.1088/1757-899X/561/1/012014.

  57. Dutta D, Ghosh S (2018) Enhancing the mechanical and microstructural properties of silica fume blended fly ash based geopolymer using Murram as a tertiary supplement. Rasayan J Chem 11:1018–1033. https://doi.org/10.31788/RJC.2018.1133046

    Article  Google Scholar 

  58. Singh K (2020) Experimental study on metakolin and baggashe ash based geopolymer concrete. Mater Today Proc 37:3289–3295. https://doi.org/10.1016/j.matpr.2020.09.116

    Article  Google Scholar 

  59. IS 516 (1959) Method of tests for strength of concrete. Bureau of Indian Standards, pp 1–30

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this research work.

Author information

Authors and Affiliations

Authors

Contributions

SMK: Conceptualization, Investigation, Methodology, Data curation, Dr. SS: Conceptualization, Reviewing & Supervision, RTV: Writing—review and editing, Resources, Software, Data curation, Formal analysis., Dr. SJM: Methodology, Supervision.

Corresponding author

Correspondence to Reshma T. Vishweshwaraiah.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not Applicable.

Consent to participate

Not Applicable.

Consent to publish

Not Applicable.

Informed consent

For this type of study, formal informed consent is not required.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid , S.M., Shanthaveerappa, S.M., Vishweshwaraiah, R.T. et al. Potential utilization of industrial effluents in ternary blended geopolymer concrete for future sustainable environment. Innov. Infrastruct. Solut. 8, 104 (2023). https://doi.org/10.1007/s41062-023-01072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-023-01072-2

Keywords

Navigation