Log in

Small-Strain Shear Modulus and Strength Characteristics of Clayey Soil Treated with Nano-SiO2 and Fly Ash

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The study investigated the enhancement of mechanical strength and small-strain stiffness characteristics of soil blended with Nano-SiO2 and fly ash. Through consistency limits, compaction, unconfined compression strength (UCS), and triaxial testing (UU), the fundamental characteristics of the specimens were evaluated. A series of piezoelectric bender element tests were performed at various confining pressures (50 kPa, 100 kPa, and 150 kPa) to measure the small-strain shear modulus (Gmax) of the soil matrix. For a better understanding of the underlying microstructural changes found in the specimens, the Energy dispersive X-ray spectroscopy (EDS) analysis and Scanning Electron Microscopy (SEM) investigation were both conducted. With curing ages of 1, 7, 14, and 28 days, five distinct combinations of Nano-SiO2 (0.5%, 1%, 3%, 5%, and 7%) and fly ash (10%, 20%, and 30%) by weight of soil were used in this investigation. After 28 days, the rate of increase in UCS and shear strength of 1% Nano-SiO2 treated soil was found to be 97.12% and 215.04%, respectively. The soil treated with 1% Nano-SiO2 and 20% fly ash increased the shear strength by 295% after 28 days of curing. At 28 days of curing age, the treated soil's optimal composition of 1% Nano-SiO2 and 20% fly ash produced the maximum strength and shear stiffness. An exponential correlation was developed between small-strain shear stiffness and shear strength for the composite mix. The correlation may help in predicting the small-strain shear modulus of the clayey soil treated with the optimized Nano-SiO2 and fly ash using triaxial tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the manuscript.

References

  1. Worrell E, Price L, Martin N, Hendriks C, Meida LO (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Environ Resour 26(1):303–329. https://doi.org/10.1146/annurev.energy.26.1.303

    Article  Google Scholar 

  2. Van Oss HG, Padovani AC (2003) Cement manufacture and the environment part II: environmental challenges and opportunities. J Ind Ecol 7(1):93–126. https://doi.org/10.1162/108819803766729212

    Article  Google Scholar 

  3. Kreyling WG, Behnke MS, Chaudhry Q (2010) A complementary definition of nanomaterial. Nano Today 5(3):165–168. https://doi.org/10.1016/j.nantod.2010.03.004

    Article  Google Scholar 

  4. Hegde K, Brar SK, Verma M, Surampalli RY (2016) Current understandings of toxicity, risks and regulations of engineered nanoparticles with respect to environmental microorganisms. Nanotechnol Environ Eng 1:1–12. https://doi.org/10.1007/s41204-016-0005-4

    Article  Google Scholar 

  5. Zhu W, Bartos PJ, Porro A (2004) Application of nanotechnology in construction: Summary of a State-of-the-art Report. Mater Struct 37:649–658. https://doi.org/10.1007/BF02483294

    Article  Google Scholar 

  6. Taha MR, Taha OME (2012) Influence of nano-material on the expansive and shrinkage soil behaviour. J Nanopart Res 14:1–13. https://doi.org/10.1007/s11051-012-1190-0

    Article  Google Scholar 

  7. Huang Y, Wang L (2016) Experimental studies on nanomaterials for soil improvement: a review. Environ Earth Sci 75:1–10. https://doi.org/10.1007/s12665-015-5118-8

    Article  Google Scholar 

  8. Ghasabkolaei N, Choobbasti AJ, Roshan N, Ghasemi SE (2017) Geotechnical properties of the soils modified with nanomaterials: A comprehensive review. Arch Civ Mech Eng 17:639–650. https://doi.org/10.1016/j.acme.2017.01.010

    Article  Google Scholar 

  9. Krishnan J, Shukla S (2019) The behaviour of soil stabilised with nanoparticles: an extensive review of the present status and its applications. Arab J Geosci 12:1–25. https://doi.org/10.1007/s12517-019-4595-6

    Article  Google Scholar 

  10. Harsh H, Moghal AAB, Rasheed RM, Almajed A (2023) State-of-the-art review on the role and applicability of select nano-compounds in geotechnical and geoenvironmental applications. Arab J Sci Eng 48(4):4149–4173. https://doi.org/10.1007/s13369-022-07036-5

    Article  Google Scholar 

  11. Kannan G, Sujatha ER (2022) A review on the choice of nano-silica as soil stabilizer. SILICON 14(12):6477–6492. https://doi.org/10.1007/s12633-021-01455-z

    Article  Google Scholar 

  12. Samala HR, Mir BA (2020) Some studies on microstructural behaviour and unconfined compressive strength of soft soil treated with SiO2 nanoparticles. Inno Infrastrust Solut 5:1–12. https://doi.org/10.1007/s41062-020-0283-3

    Article  Google Scholar 

  13. Kalhor A, Ghazav M, Roustaei M (2022) Impacts of nano-silica on physical properties and shear strength of clayey soil. Arab J Sci Eng 47:5271–5279. https://doi.org/10.1007/s13369-021-06453-2

    Article  Google Scholar 

  14. Zomorodian SMA, Shabnam M, Armina S, O’ Kell BC, (2017) Strength enhancement of clean and kerosene-contaminated sandy lean clay using nano clay and nano silica as additives. App Clay Sci 140:140–147. https://doi.org/10.1016/j.clay.2017.02.004

    Article  Google Scholar 

  15. Sarli JM, Hadadi F, Bagheri RA (2020) Stabilizing geotechnical properties of loess soil by mixing recycled polyester fiber and nano-SiO2. Geotech Geol Eng 38:1151–1163. https://doi.org/10.1007/s10706-019-01078-7

    Article  Google Scholar 

  16. Bahmani SH, Huat BBK, Asadi A, Farzadnia N (2014) Stabilization of residual soil using SiO2 nanoparticles and cement. Constr Build Mater 64:350–359. https://doi.org/10.1016/j.conbuildmat.2014.04.086

    Article  Google Scholar 

  17. Kalhor A, Ghazavi M, Roustaei M, Mirhosseini SM (2019) Influence of nano-SiO2 on geotechnical properties of fine soils subjected to freeze-thaw cycles. Cold Reg Sci Technol 161:129–136. https://doi.org/10.1016/j.coldregions.2019.03.011

    Article  Google Scholar 

  18. Selvakumar S, Kulanthaivel P, Soundara B (2021) Influence of nano-silica and sodium silicate on the strength characteristics of clay soil. Nanotechnol Environ Eng 6:46. https://doi.org/10.1007/s41204-021-00142-z

    Article  Google Scholar 

  19. Thomas G, Rangaswamy K (2020) Strengthening of cement blended soft clay with nano-silica particles. Geomech Eng 20(6):505–516. https://doi.org/10.12989/gae.2020.20.6.505

    Article  Google Scholar 

  20. Munda J, Padhi J, Mohanty S (2022) Investigation on performance of expansive soil stabilized with fly ash and nano-SiO2. Mater Today Proc 67(8):1268–1275. https://doi.org/10.1016/j.matpr.2022.08.524

    Article  Google Scholar 

  21. Johari A, Golkarfard H, Davoudi F, Fazeli A (2020) Experimental investigation of collapsible soils treatment using nano-silica in the sivand dam region. Iran Iran J Sci Technol Trans Civ Eng 46:1301–1310. https://doi.org/10.1007/s40996-021-00675-y

    Article  Google Scholar 

  22. Cui H, ** Z, Bao X, Tang W, Dong B (2018) Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms. Constr Build Mater 189:286–295. https://doi.org/10.1016/j.conbuildmat.2018.08.181

    Article  Google Scholar 

  23. Changizi F, Haddad A (2015) Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber. J Rock Mech Geotech Eng 7(4):367–378. https://doi.org/10.1016/j.jrmge.2015.03.013

    Article  Google Scholar 

  24. Kumar A, Walia BS, Bajaj A (2007) Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil. J Mater Civ Eng 19(3):242–248. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:3(242)

    Article  Google Scholar 

  25. Zha F, Liu S, Du Y, Cui K (2008) Behavior of expansive soils stabilized with fly ash. Nat Hazards 47:509–523. https://doi.org/10.1007/s11069-008-9236-4

    Article  Google Scholar 

  26. Tastan EO, Edil TB, Benson CH, Aydilek AH (2011) Stabilization of organic soils with fly ash. J Geotech Geoenviron Eng 137(9):819–833. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000502

    Article  Google Scholar 

  27. Horpibulsuk S, Phetchuay C, Chinkulkijniwat A (2012) Soil stabilization by calcium carbide residue and fly ash. J Mater Civ Eng 24(2):184–193. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000370

    Article  Google Scholar 

  28. Mahedi M, Cetin B, White DJ (2020) Cement, lime, and fly ashes in stabilizing expansive soils: performance evaluation and comparison. J Mater Civ Eng 32(7):04020177. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003260

    Article  Google Scholar 

  29. Eskisar T (2021) The role of carbide lime and fly ash blends on the geotechnical properties of clay soils. Bull Eng Geol Environ 80(8):6343–6357. https://doi.org/10.1007/s10064-021-02326-y

    Article  Google Scholar 

  30. Karl L, Haegeman W, Degrande G, Dooms D (2008) Determination of the material dam** ratio with the bender element test. J Geotech Geoenviron Eng 134(12):1743–1756

    Article  Google Scholar 

  31. Patel A, Singh KK, Singh DN (2012) Application of piezoceramic elements for determining elastic properties of soils. Geotech Geol Eng 30:407–417. https://doi.org/10.1007/s10706-011-9476-z

    Article  Google Scholar 

  32. Ogino T, Kawaguchi T, Yamashita S, Kawajiri S (2015) Measurement deviations for shear wave velocity of bender element test using time domain, cross-correlation, and frequency domain approaches. Soils Found 55(2):329–342. https://doi.org/10.1016/j.sandf.2015.02.009

    Article  Google Scholar 

  33. Kang X, Bate B (2016) Shear wave velocity and its anisotropy of polymer modified high-volume class-F fly ash-kaolinite mixtures. J Geotech Geoenviron Eng 142(12):04016068. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001562

    Article  Google Scholar 

  34. Cheng Z, Leong EC (2018) Determination of dam** ratios for soils using bender element tests. Soil Dyn Earthq Eng 111:8–13. https://doi.org/10.1016/j.soildyn.2018.04.016

    Article  Google Scholar 

  35. Ram AK, Mohanty S (2021) Experimental investigation on dynamic behavior of silt-rich fly ash using cyclic triaxial and bender element tests. Innov Infrastruct Solut 6(4):219. https://doi.org/10.1007/s41062-021-00582-1

    Article  Google Scholar 

  36. Wang F, Li D, Du W, Zarei C, Liu Y (2021) Bender element measurement for small-strain shear modulus of compacted loess. Int J Geomech 21(5):04021063. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002004

    Article  Google Scholar 

  37. Heidarizadeh Y, Lajevardi SH, Sharifipour M (2021) Correlation between small-strain shear stiffness and compressive strength of clayey soils stabilized with cement and nano-SiO2. Int J of Geosynth and Ground Eng 7:1–12. https://doi.org/10.1007/s40891-021-00258-x

    Article  Google Scholar 

  38. Jafari SH, Lajevardi SH, Sharifipour M, Kamalian M (2021) Evaluation of small strain stiffness characteristics of soft clay treated with lime and nanosilica and correlation with UCS (qu). Bull Eng Geol Environ 80:3163–3175. https://doi.org/10.1007/s10064-021-02115-7

    Article  Google Scholar 

  39. Fatahi B, Fatahi B, Le TM, Khabbaz H (2013) Small-strain properties of soft clay treated with fiber and cement. Geosynth Int 20(4):286–300. https://doi.org/10.1680/gein.13.00018

    Article  Google Scholar 

  40. Lang L, Li F, Chen B (2020) Small-strain dynamic properties of silty clay stabilized by cement and fly ash. Constr Build Mater 237:117646. https://doi.org/10.1016/j.conbuildmat.2019.117646

    Article  Google Scholar 

  41. Thomas G, Rangaswamy K (2020) Dynamic soil properties of nanoparticles and bioenzyme treated soft clay. Soil Dyn Earthq Eng 137:106324. https://doi.org/10.1016/j.soildyn.2020.106324

    Article  Google Scholar 

  42. Thomas G, Rangaswamy K (2022) Small strain stiffness and site-specific Seismic response of nano-silica stabilised soft clay in Kochi, India: a case study. Arab J Geosci 15:1–17. https://doi.org/10.1007/s12517-021-09315-1

    Article  Google Scholar 

  43. Wu J, Min Y, Li B, Zheng X (2021) Stiffness and strength development of the soft clay stabilized by the one-part geopolymer under one-dimensional compressive loading. Soils Found 61(4):974–988. https://doi.org/10.1016/j.sandf.2021.06.001

    Article  Google Scholar 

  44. Mojtahedzadeh N, Ghalandarzadeh A, Motamed R (2022) Experimental evaluation of dynamic characteristics of firouzkooh sand using cyclic triaxial and bender element tests. Int J Civ Eng 20(2):125–138. https://doi.org/10.1007/s40999-021-00644-6

    Article  Google Scholar 

  45. Jafari SH, Lajevard SH (2022) Influence of freeze–thaw cycles on strength and small strain shear modulus of fine-grained soils stabilized with nano-SiO2 and lime using bender element tests. Bull Eng Geol Environ 81(6):234. https://doi.org/10.1007/s10064-022-02730-y

    Article  Google Scholar 

  46. Debnath R, Saha R, Haldar S (2022) Assessment of small strain dynamic soil properties of railway site Agartala, India, by bender element tests. Arab J Geosci 15(18):1500. https://doi.org/10.1007/s12517-022-10749-4

    Article  Google Scholar 

  47. IS 2720-part 4 (1985) Methods of test for soils: determination of grain size distribution. Bureau of Indian Standards, New Delhi

    Google Scholar 

  48. IS 2720-part 5 (1985) Methods of test for soils: determination of Atterberg limits. Bureau of Indian Standards, New Delhi

    Google Scholar 

  49. IS 2720-part 7 (1980) Methods of test for soils: determination of water content-dry density relation using light compaction. Bureau of Indian Standards, New Delhi

    Google Scholar 

  50. ASTM C618 (2022) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

  51. IS 2720-part 10 (1991) Methods of test for soils: determination of unconfined compressive strength. Bureau of Indian Standards, New Delhi

    Google Scholar 

  52. IS 2720-part 11 (1993) Methods of test for soils: determination of the shear strength parameters of a specimen tested in unconsolidated undrained triaxial compression without the measurement of pore water pressure. Bureau of Indian Standards, New Delhi

    Google Scholar 

  53. Shirley DJ (1978) An Improved Shear Wave Transducer. J Acoust Soc Am 63(5):1643–1645. https://doi.org/10.1121/1.381866

    Article  Google Scholar 

  54. Shirley DJ, Hampton LD (1978) Shear-wave measurements in laboratory sediments. J Acoust Soc Am 63(2):607–613. https://doi.org/10.1121/1.381760

    Article  Google Scholar 

  55. ASTM D8295–19: (2019) Standard test method for determination of shear wave velocity and initial Shear Modulus in soil specimens using bender elements,

  56. Leong EC, Cahyadi J, Rahardjo H (2009) Measuring shear and compression wave velocities of soil using bender-extender elements. Can Geotech J 46(7):792–812. https://doi.org/10.1139/t09-026

    Article  Google Scholar 

  57. Fonseca AV, Ferreira C, Fahey MA (2008) Framework Interpreting Bender Element Tests, Combining Time-Domain and Frequency-Domain Methods. Geotech Test J 32(2):1–17

    Google Scholar 

  58. Camacho-Tauta JF, Cascante G, Fonseca AV, Santos JA (2015) Time and frequency domain evaluation of bender element systems. Geotechnique 65(7):548–562. https://doi.org/10.1680/geot.13.p.206

    Article  Google Scholar 

  59. Kawaguchi T, Ogino T, Yamashita S, Kawajiri S (2016) Identification method for travel time based on the time domain technique in bender element tests on sandy and clayey soils. Soils Found 56(5):937–946. https://doi.org/10.1016/j.sandf.2016.08.017

    Article  Google Scholar 

  60. Aksu G, Eskisar T (2022) The geomechanical properties of soils treated with nanosilica particles. J Rock Mech Geotech Eng 15:954–969. https://doi.org/10.1016/j.jrmge.2022.06.013

    Article  Google Scholar 

  61. Nezhad RS, Nasehi SA, Uromeihy A, Nikudel MR (2021) Utilization of nano silica and hydrated lime to improve the unconfined compressive strength (UCS) of gas oil contaminated clay. Geotech Geol Eng 39:2633–2651. https://doi.org/10.1007/s10706-020-01642-6

    Article  Google Scholar 

  62. Kulkarni PP, Mandal JN (2022) Strength evaluation of soil stabilized with nano silica- cement mixes as road construction material. Constr Build Mater 314:125363. https://doi.org/10.1016/j.conbuildmat.2021.125363

    Article  Google Scholar 

  63. Mir BA, Sridharan A (2013) Physical and compaction behaviour of clay soil–fly ash mixtures. Geotech Geol Eng 31:1059–1072. https://doi.org/10.1007/s10706-013-9632-8

    Article  Google Scholar 

  64. Savaş H, Türköz M, Seyrek E, Ünver E (2018) Comparison of the effect of using class C and F fly ash on the stabilization of dispersive soils. Arab J Geosci 11:1–13. https://doi.org/10.1007/s12517-018-3976-6

    Article  Google Scholar 

  65. Choobbasti AJ, Vafaei A, Kutanaei SS (2018) Static and cyclic triaxial behavior of cemented sand with Nanosilica. J Mater Civ Eng 30(10):04018269. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002464

    Article  Google Scholar 

  66. Dai Z, Guo J, Luo H, Li J, Chen S (2020) Strength characteristics and slope stability analysis of expansive soil with filled fissures. Appl Sci 10(13):4616. https://doi.org/10.3390/app10134616

    Article  Google Scholar 

  67. Wang Y, Guo P, Li X, Lin H, Liu Y, Yuan H (2019) Behavior of fiber-reinforced and lime-stabilized clayey soil in triaxial tests. Appl Sci 9(5):900. https://doi.org/10.3390/app9050900

    Article  Google Scholar 

  68. Tomar A, Sharma T, Singh S (2020) Strength properties and durability of clay soil treated with mixture of nano silica and Polypropylene fiber. Mater Today Proc 26:3449–3457. https://doi.org/10.1016/j.matpr.2019.12.239

    Article  Google Scholar 

  69. Kang X, Bate B (2016) Shear wave velocity and its anisotropy of polymer modified high-volume class-F fly ash–kaolinite mixtures. J Geotech Geoenviron Eng 142(12):04016068. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001562

    Article  Google Scholar 

  70. Petcherdchoo A, Pochalard S, Piriyakul K (2023) Use of bender element tests for determining shear modulus of fly-ash and cement admixed Bangkok clay with considering unconfined compressive strength. Case Stud Constr Mater. https://doi.org/10.1016/j.cscm.2023.e02040

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya Mohanty.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munda, J., Ram, A.K. & Mohanty, S. Small-Strain Shear Modulus and Strength Characteristics of Clayey Soil Treated with Nano-SiO2 and Fly Ash. Int J Civ Eng 21, 1813–1833 (2023). https://doi.org/10.1007/s40999-023-00857-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-023-00857-x

Keywords

Navigation