Log in

Fabrication of Novel Geopolymer Grout as Repairing Material for Application in Damaged RC Beams

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

In this study, a new grouting composite, called geopolymer grout, with high compressive strength (> 107 MPa, cured at ambient conditions) was developed and injected into damaged reinforced concrete (RC) beam. This investigation was planned in two steps: (1) determination of optimum geopolymer grout composite depending on viscosity, compressive strength, and SEM findings; (2) injection of optimum geopolymer grout to damaged RC beam. Geopolymer grouts were fabricated with different NaOH concentrations (i.e., 8, 10, and 12 M) and Ca(OH)2 contents (1, 3, 5 and 7% of slag weight). A remarkable advance in fresh and hardened characteristics of geopolymer grouts was acquired with changing of NaOH concentration and Ca(OH)2 content. A reference RC beam was subjected to bending test and the load–displacement curve was obtained. The determined optimum geopolymer grout was injected into this damaged RC beam and exposed to reloading test. The strengthened RC beam specimen was compared with reference RC beam in terms of failure modes, load capacity and crack patterns. After damaged RC beam was strengthened, it showed higher mechanical performance compared to reference RC beam. The experimental findings revealed that geopolymer grouts could be a suitable alternative for repair and strengthening of damaged RC beam due to their low viscosity, eco-friendliness, good bonding and superior compressive strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Al-Zboon KK, Al-smadi BM, Al-Khawaldh S (2016) Natural volcanic tuff-based geopolymer for Zn removal: adsorption isotherm, kinetic, and thermodynamic study. Water Air Soil Pollut 227(7):1–22. https://doi.org/10.1007/s11270-016-2937-5

    Article  Google Scholar 

  2. Rasaki SA, Bingxue Z, Guarecuco R, Thomas T, Minghui Y (2019) Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: a critical review. J Cleaner Prod 213:42–58. https://doi.org/10.1016/j.jclepro.2018.12.145

    Article  Google Scholar 

  3. Zhang Z, Qian J, You C, Hu C (2012) Use of circulating fluidized bed combustion fly ash and slag in autoclaved brick. Constr Build Mater 35:109–116. https://doi.org/10.1016/j.conbuildmat.2012.03.006

    Article  Google Scholar 

  4. Chindaprasirt P, Chareerat T, Hatanaka S, Cao T (2011) High-strength geopolymer using fine high-calcium fly ash. J Mater Civ Eng 23(3):264–270. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000161

    Article  Google Scholar 

  5. Nurruddin MF, Sani H, Mohammed BS, Shaaban I (2018) Methods of curing geopolymer concrete: a review. Int J Adv Appl Sci 5(1):31–36. https://doi.org/10.21833/ijaas.2018.01.005

    Article  Google Scholar 

  6. Turner LK, Collins FG (2013) Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr Build Mater 43:125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023

    Article  Google Scholar 

  7. Vasconcelos E, Fernandes S, De Aguiar JB, Pacheco-Torgal F (2011) Concrete retrofitting using metakaolin geopolymer mortars and CFRP. Constr Build Mater 25(8):3213–3221. https://doi.org/10.1016/j.conbuildmat.2011.03.006

    Article  Google Scholar 

  8. Nematollahi B, Ranade R, Sanjayan J, Ramakrishnan S (2017) Thermal and mechanical properties of sustainable lightweight strain hardening geopolymer composites. Arch Civ Mech Eng 17(1):55–64. https://doi.org/10.1016/j.acme.2016.08.002

    Article  Google Scholar 

  9. Zawrah MF, Gado RA, Feltin N, Ducourtieux S, Devoille L (2016) Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Saf Environ Prot 103:237–251. https://doi.org/10.1016/j.psep.2016.08.001

    Article  Google Scholar 

  10. Ge Y, Yuan Y, Wang K, He Y, Cui X (2015) Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater. J Hazard Mater 299:711–718. https://doi.org/10.1016/j.jhazmat.2015.08.006

    Article  Google Scholar 

  11. Maleki A, Hajizadeh Z, Sharifi V, Emdadi Z (2019) A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions. J Cleaner Prod 215:1233–1245. https://doi.org/10.1016/j.jclepro.2019.01.084

    Article  Google Scholar 

  12. Zhang Z, Provis JL, Reid A, Wang H (2015) Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem Concr Compos 62:97–105. https://doi.org/10.1016/j.cemconcomp.2015.03.013

    Article  Google Scholar 

  13. Ye H, Zhang Y, Yu Z, Mu J (2018) Effects of cellulose, hemicellulose, and lignin on the morphology and mechanical properties of metakaolin-based geopolymer. Constr Build Mater 173:10–16. https://doi.org/10.1016/j.conbuildmat.2018.04.028

    Article  Google Scholar 

  14. **e J, Wang J, Rao R, Wang C, Fang C (2019) Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate. Compos B 164:179–190. https://doi.org/10.1016/j.compositesb.2018.11.067

    Article  Google Scholar 

  15. Saafi M, Tang L, Fung J, Rahman M, Liggat J (2015) Enhanced properties of graphene/fly ash geopolymeric composite cement. Cem Concr Res 67:292–299. https://doi.org/10.1016/j.cemconres.2014.08.011

    Article  Google Scholar 

  16. Lahoti M, Tan KH, Yang EH (2019) A critical review of geopolymer properties for structural fire-resistance applications. Constr Build Mater 221:514–526. https://doi.org/10.1016/j.conbuildmat.2019.06.076

    Article  Google Scholar 

  17. Xu H, Li Q, Shen L, Zhang M, Zhai J (2010) Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis. Waste Manag 30(1):57–62. https://doi.org/10.1016/j.wasman.2009.09.014

    Article  Google Scholar 

  18. Abdollahnejad Z, Pacheco-Torgal F, Félix T, Tahri W, Aguiar JB (2015) Mix design, properties and cost analysis of fly ash-based geopolymer foam. Constr Build Mater 80:18–30. https://doi.org/10.1016/j.conbuildmat.2015.01.063

    Article  Google Scholar 

  19. Zhang YJ, Wang YC, Li S (2010) Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin. Mater Sci Eng A 527(24–25):6574–6580. https://doi.org/10.1016/j.msea.2010.06.069

    Article  Google Scholar 

  20. Cheng TW, Chiu JP (2003) Fire-resistant geopolymer produced by granulated blast furnace slag. Miner Eng 16(3):205–210. https://doi.org/10.1016/S0892-6875(03)00008-6

    Article  Google Scholar 

  21. Xu J, Wu C, **ang H, Su Y, Li ZX, Fang Q et al (2016) Behaviour of ultra high performance fibre reinforced concrete columns subjected to blast loading. Eng Struct 118:97–107. https://doi.org/10.1016/j.engstruct.2016.03.048

    Article  Google Scholar 

  22. Shahverdi M, Czaderski C, Annen P, Motavalli M (2016) Strengthening of RC beams by iron-based shape memory alloy bars embedded in a shotcrete layer. Eng Struct 117:263–273. https://doi.org/10.1016/j.engstruct.2016.03.023

    Article  Google Scholar 

  23. Ekenel M, Myers JJ (2007) Durability performance of RC beams strengthened with epoxy injection and CFRP fabrics. Constr Build Mater 21(6):1182–1190. https://doi.org/10.1016/j.conbuildmat.2006.06.020

    Article  Google Scholar 

  24. Nikopour H, Nehdi M (2011) Shear repair of RC beams using epoxy injection and hybrid external FRP. Mater Struct 44(10):1865–1877. https://doi.org/10.1617/s11527-011-9743-8

    Article  Google Scholar 

  25. Liu Y, Zhang M, Yin X, Huang Z, Wang L (2020) Debonding detection of reinforced concrete (RC) beam with near-surface mounted (NSM) pre-stressed carbon fiber reinforced polymer (CFRP) plates using embedded piezoceramic smart aggregates (SAs). Appl Sci 10(1):50. https://doi.org/10.3390/app10010050

    Article  Google Scholar 

  26. Deniaud C, Cheng JR (2004) Simplified shear design method for concrete beams strengthened with fiber reinforced polymer sheets. J Compos Constr 8(5):425–433. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:5(425)

    Article  Google Scholar 

  27. Abdalla JA, Abu-Obeidah AS, Hawileh RA, Rasheed HA (2016) Shear strengthening of reinforced concrete beams using externally-bonded aluminum alloy plates: an experimental study. Constr Build Mater 128:24–37. https://doi.org/10.1016/j.conbuildmat.2016.10.071

    Article  Google Scholar 

  28. Antonopoulos CP, Triantafillou TC (2003) Experimental investigation of FRP-strengthened RC beam-column joints. J Compos Constr 7(1):39–49. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:1(39)

    Article  Google Scholar 

  29. Triantafillou TC, Papanicolaou CG (2006) Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets. Mater Struct 39(1):93–103. https://doi.org/10.1007/s11527-005-9034-3

    Article  Google Scholar 

  30. Miranda L, Milosevic J, Bento R (2017) Cyclic behaviour of stone masonry walls strengthened by grout injection. Mater Struct 50(1):1–17. https://doi.org/10.1617/s11527-016-0911-8

    Article  Google Scholar 

  31. Luso E, Lourenço PB (2016) Experimental characterization of commercial lime based grouts for stone masonry consolidation. Constr Build Mater 102:216–225. https://doi.org/10.1016/j.conbuildmat.2015.10.096

    Article  Google Scholar 

  32. ASTM D4016-08 (2008) Standard test method for viscosity of chemical grouts by Brookfield viscometer (Laboratory Method). West Conshohocken. https://doi.org/10.1520/D4016-08

    Article  Google Scholar 

  33. DIN 53019-1 (2008) Viscometry-Measurement of viscosities and flow curves by means of rotational viscometers-Part 1: principles and measuring geometry. Doi: https://doi.org/10.1122/1.550017

  34. Roviello G, Menna C, Tarallo O, Ricciotti L, Messina F, Ferone C et al (2017) Lightweight geopolymer-based hybrid materials. Compos B 128:225–237. https://doi.org/10.1016/j.compositesb.2017.07.020

    Article  Google Scholar 

  35. ASTM C109 (2021) Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50 mm] Cube Specimens) ASTM International, West Conshohocken, PA. DOI: https://doi.org/10.1520/C0109_C0109M-21

  36. Silva BA, Pinto AF, Gomes A, Candeias A (2020) Impact of a viscosity-modifying admixture on the properties of lime mortars. J Build Eng 31:101132. https://doi.org/10.1016/j.jobe.2019.101132

    Article  Google Scholar 

  37. Dejaeghere I, Sonebi M, De Schutter G (2019) Influence of nano-clay on rheology, fresh properties, heat of hydration and strength of cement-based mortars. Constr Build Mater 222:73–85. https://doi.org/10.1016/j.conbuildmat.2019.06.111

    Article  Google Scholar 

  38. Chen M, Javilla B, Hong W, Pan C, Riara M, Mo L, Guo M (2019) Rheological and interaction analysis of asphalt binder, mastic and mortar. Mater 12(1):128. https://doi.org/10.3390/ma12010128

    Article  Google Scholar 

  39. Senff L, Labrincha JA, Ferreira VM, Hotza D, Repette WL (2009) Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr Build Mater 23(7):2487–2491. https://doi.org/10.1016/j.conbuildmat.2009.02.005

    Article  Google Scholar 

  40. Jiménez-Quero VG, León-Martínez FM, Montes-Garcia P, Gaona-Tiburcio C, Chacón-Nava JG (2013) Influence of sugar-cane bagasse ash and fly ash on the rheological behavior of cement pastes and mortars. Constr Build Mater 40:691–701. https://doi.org/10.1016/j.conbuildmat.2012.11.023

    Article  Google Scholar 

  41. Grandes FA, Sakano VK, Rego AC, Cardoso FA, Pileggi RG (2018) Squeeze flow coupled with dynamic pressure map** for the rheological evaluation of cement-based mortars. Cem Concr Compos 92:18–35. https://doi.org/10.1016/j.cemconcomp.2018.05.016

    Article  Google Scholar 

  42. Leemann A, Winnefeld F (2007) The effect of viscosity modifying agents on mortar and concrete. Cem Concr Compos 29(5):341–349. https://doi.org/10.1016/j.cemconcomp.2007.01.004

    Article  Google Scholar 

  43. Samantasinghar S, Singh SP (2019) Fresh and hardened properties of fly ash–slag blended geopolymer paste and mortar. Int J Concr Struct Mater 13(1):1–12. https://doi.org/10.1186/s40069-019-0360-1

    Article  Google Scholar 

  44. Djobo JNY, Elimbi A, Tchakouté HK, Kumar S (2016) Mechanical properties and durability of volcanic ash based geopolymer mortars. Constr Build Mater 124:606–614. https://doi.org/10.1016/j.conbuildmat.2016.07.141

    Article  Google Scholar 

  45. Singh S, Aswath MU, Ranganath RV (2018) Effect of mechanical activation of red mud on the strength of geopolymer binder. Constr Build Mater 177:91–101. https://doi.org/10.1016/j.conbuildmat.2018.05.096

    Article  Google Scholar 

  46. Wei B, Zhang Y, Bao S (2017) Preparation of geopolymers from vanadium tailings by mechanical activation. Constr Build Mater 145:236–242. https://doi.org/10.1016/j.conbuildmat.2017.03.234

    Article  Google Scholar 

  47. Lancellotti I, Ponzoni C, Barbieri L, Leonelli C (2013) Alkali activation processes for incinerator residues management. Waste Manag 33(8):1740–1749. https://doi.org/10.1016/j.wasman.2013.04.013

    Article  Google Scholar 

  48. De Vargas AS, Dal Molin DC, Vilela AC, Da Silva FJ, Pavao B, Veit H (2011) The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers. Cem Concr Compos 33(6):653–660. https://doi.org/10.1016/j.cemconcomp.2011.03.006

    Article  Google Scholar 

  49. Hu M, Zhu X, Long F (2009) Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives. Cem Concr Compos 31(10):762–768. https://doi.org/10.1016/j.cemconcomp.2009.07.006

    Article  Google Scholar 

  50. He J, Jie Y, Zhang J, Yu Y, Zhang G (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem Concr Compos 37:108–118. https://doi.org/10.1016/j.cemconcomp.2012.11.010

    Article  Google Scholar 

  51. Somna K, Jaturapitakkul C, Kajitvichyanukul P, Chindaprasirt P (2011) NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 90(6):2118–2124. https://doi.org/10.1016/j.fuel.2011.01.018

    Article  Google Scholar 

  52. Part WK, Ramli M, Cheah CB (2015) An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr Constr Build Mater 77:370–395. https://doi.org/10.1016/j.conbuildmat.2014.12.065

    Article  Google Scholar 

  53. Guo X, Shi H, Chen L, Dick WA (2010) Alkali-activated complex binders from class C fly ash and Ca-containing admixtures. J Hazard Mater 173(1–3):480–486. https://doi.org/10.1016/j.jhazmat.2009.08.110

    Article  Google Scholar 

  54. Tho-In T, Sata V, Boonserm K, Chindaprasirt P (2018) Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. J Cleaner Prod 172:2892–2898. https://doi.org/10.1016/j.jclepro.2017.11.125

    Article  Google Scholar 

  55. Punurai W, Kroehong W, Saptamongkol A, Chindaprasirt P (2018) Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste. Constr Build Mater 186:62–70. https://doi.org/10.1016/j.conbuildmat.2018.07.115

    Article  Google Scholar 

  56. Hwang CL, Huynh TP (2015) Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Constr Build Mater 101:1–9. https://doi.org/10.1016/j.conbuildmat.2015.10.025

    Article  Google Scholar 

  57. Yacob NS, ElGawady MA, Sneed LH, Said A (2019) Shear strength of fly ash-based geopolymer reinforced concrete beams. Eng Struct 196:109298. https://doi.org/10.1016/j.engstruct.2019.109298

    Article  Google Scholar 

  58. Zailani WWA, Abdullah MMAB, Arshad MF, Razak RA, Tahir MFM et al (2021) Characterisation at the bonding zone between fly ash based geopolymer repair materials (GRM) and ordinary portland cement concrete (OPCC). Materials 14(1):56

    Article  Google Scholar 

  59. Laskar SM, Talukdar S (2017) Preparation and tests for workability, compressive and bond strength of ultra-fine slag based geopolymer as concrete repairing agent. Constr Build Mater 154:176–190. https://doi.org/10.1016/j.conbuildmat.2017.07.187

    Article  Google Scholar 

  60. Shokrieh MM, Omidi MJ (2009) Tension behavior of unidirectional glass/epoxy composites under different strain rates. Compos Struct 88(4):595–601. https://doi.org/10.1016/j.compstruct.2008.06.012

    Article  Google Scholar 

  61. Gu DS, Wu YF, Wu G, Wu ZS (2012) Plastic hinge analysis of FRP confined circular concrete columns. Constr Build Mater 27(1):223–233. https://doi.org/10.1016/j.conbuildmat.2011.07.056

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Inonu University Project of Scientific Investigation (PSI) for their financial support for this project (2020/2062).

Funding

The authors are grateful to the Inonu University Project of Scientific Investigation (PSI) for their financial support for this project (2020/2062).

Author information

Authors and Affiliations

Authors

Contributions

FK and MMM shared equal responsibility for conceptualization, methodology, investigation, writing, review and editing of the article.

Corresponding author

Correspondence to Fatih Kantarci.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantarci, F., Maraş, M.M. Fabrication of Novel Geopolymer Grout as Repairing Material for Application in Damaged RC Beams. Int J Civ Eng 20, 461–474 (2022). https://doi.org/10.1007/s40999-021-00695-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-021-00695-9

Keywords

Navigation