Log in

Effect of Intermetallic Phases and Compounds on the Compressive Behavior and Fracture Mechanism of Al–Si–Zn Foams

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this study, the effects of alloy elements, oxide phases, and created intermetallic compounds of aluminum alloy foams with different percentages of silicon, zinc, and combinations of both these elements were investigated on the compressive properties and fracture behavior of these foams. The results showed that the addition of alloying elements formed intermetallic compounds in the structure of the foam, and the number of intermetallic compounds increased with increasing the percentage of these elements which causes inconsistency between these compounds and base materials. All these factors changed the failure mechanism of these foams so that the failure behavior of pure aluminum foam and zinc-containing foams was a ductile failure, whereas the failure behaviors of silicon-containing foam samples were brittle. The Al–4%Si–4%Zn sample had the highest compressive strength among all of the fabricated samples due to the uniformly distributed intermetallic compounds in the cell wall of these samples, whereas the Al–8%Si, Al–8%Si–4%Zn, and Al–8%Si–8%Zn foam samples were more brittle than the other fabricated foam samples due to the more formation of brittle compounds such as CaAl2Si2 and their accumulation in a certain area which reduced the compressive strength of these foams. Also, it was observed that the energy absorption capacity and yield strength of pure aluminum foam generally increased with the addition of alloy elements due to the increase in the amount of created intermetallic compounds in the structure of these foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. D.K. Rajak, M. Gupta, Applications of metallic foams, in An Insight Into Metal Based Foams. Springer. 21–37 (2020). https://doi.org/10.1007/978-981-15-9069-6_2

  2. F. Binesh, J. Zamani, M. Ghiasvand, Ordered structure composite metal foams produced by casting. Inter Metalcast 12, 89–96 (2018). https://doi.org/10.1007/s40962-017-0143-x

    Article  Google Scholar 

  3. F. García-Moreno, Commercial applications of metal foams: their properties and production. Materials (2016). https://doi.org/10.3390/ma9020085

    Article  Google Scholar 

  4. L.P. Lefebvre, J. Banhart, D.C. Dunand, Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10(9), 775–787 (2008). https://doi.org/10.1002/adem.200800241

    Article  CAS  Google Scholar 

  5. J. Banhart, Aluminium foams for lighter vehicles. Int. J. Veh. Des. 37(2–3), 114–125 (2005). https://doi.org/10.1504/IJVD.2005.006640

    Article  Google Scholar 

  6. K.S. Verma, D. Muchhala, S.K. Panthi et al., Influences of cell size, cell wall thickness and cell circularity on the compressive responses of closed-cell aluminum Foam and its FEA analysis. Inter Metalcast (2021). https://doi.org/10.1007/s40962-021-00627-2

    Article  Google Scholar 

  7. K. Kadoi, H. Nakae, Relationship between foam stabilization and physical properties of particles on aluminum foam production. Mater. Trans. 1, 1 (2011). https://doi.org/10.2320/matertrans.F-M2011817

    Article  CAS  Google Scholar 

  8. Ç. Bolat, İC. Akgün, A. Gökşenli, Effect of aging heat treatment on compressive characteristics of bimodal aluminum syntactic foams produced by cold chamber die casting. Inter Metalcast (2021). https://doi.org/10.1007/s40962-021-00629-0

    Article  Google Scholar 

  9. F. Campana, D. Pilone, Effect of wall microstructure and morphometric parameters on the crush behaviour of Al alloy foams. Mater. Sci. Eng. A 479(1–2), 58–64 (2008). https://doi.org/10.1016/j.msea.2007.06.040

    Article  CAS  Google Scholar 

  10. V. Jeenager, V. Pancholi, Influence of cell wall microstructure on the energy absorption capability of aluminium foam. Mater. Des. 1980–2015, 454–459 (2014). https://doi.org/10.1016/j.matdes.2013.08.109

    Article  CAS  Google Scholar 

  11. L.Y. Aguirre-Perales, R.A. Drew, I.-H. Jung, The effect of in situ intermetallic formation on Al-Sn foaming behavior. Metall. Mater. Trans. A 1, 3714 (2014). https://doi.org/10.1007/s11661-014-2313-2

    Article  CAS  Google Scholar 

  12. Y. Yamada et al., Compressive deformation behaviour of a closed-cell aluminum. Mater. Sci. Forum (2006). https://doi.org/10.4028/www.scientific.net/MSF.510-511.150

    Article  Google Scholar 

  13. Y. Mu et al., Deformation mechanisms of closed-cell aluminum foam in compression. Scripta Mater. (2010). https://doi.org/10.1016/j.scriptamat.2010.05.041

    Article  Google Scholar 

  14. X.-Q. Cao et al., Effects of cell size on compressive properties of aluminum foam. Trans. Nonferrous Met. Soc. China (2006). https://doi.org/10.1016/S1003-6326(06)60060-5

    Article  Google Scholar 

  15. H.-W. Song et al., Fracture mechanisms and size effects of brittle metallic foams: In situ compression tests inside SEM. Compos. Sci. Technol. 68(12), 2441–2450 (2008). https://doi.org/10.1016/j.compscitech.2008.04.023

    Article  CAS  Google Scholar 

  16. E. Maire et al., Recent results on 3D characterisation of microstructure and damage of metal matrix composites and a metallic foam using X-ray tomography. Mater. Sci. Eng. A 319, 216–219 (2001). https://doi.org/10.1016/S0921-5093(01)00924-8

    Article  Google Scholar 

  17. A. Elmoutaouakkil et al., 2D and 3D characterization of metal foams using X-ray tomography. Adv. Eng. Mater. 4(10), 803–807 (2002). https://doi.org/10.1002/1527-2648(20021014)4:10%3c803::AID-ADEM803%3e3.0.CO;2-D

    Article  CAS  Google Scholar 

  18. C. San Marchi, J.-F. Despois, A. Mortensen, Uniaxial deformation of open-cell aluminum foam: the role of internal damage. Acta Mater. 52(10), 2895–2902 (2004). https://doi.org/10.1016/j.actamat.2004.02.035

    Article  CAS  Google Scholar 

  19. S. McDonald et al., Characterization of the three-dimensional structure of a metallic foam during compressive deformation. J. Microsc. 223(2), 150–158 (2006). https://doi.org/10.1111/j.1365-2818.2006.01607.x

    Article  CAS  Google Scholar 

  20. A. Markaki, T. Clyne, The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams. Acta Mater. 49(9), 1677–1686 (2001)

    Article  CAS  Google Scholar 

  21. H.-J. Yu, G.-C. Yao, Y.-H. Liu, Tensile property of Al-Si closed-cell aluminum foam. Trans. Nonferrous Met. Soc. China 16(6), 1335–1340 (2006)

    Article  CAS  Google Scholar 

  22. T. Savaşkan, A. Aydıner, Effects of silicon content on the mechanical and tribological properties of monotectoid-based zinc–aluminium–silicon alloys. Wear 257(3–4), 377–388 (2004). https://doi.org/10.1016/j.wear.2004.01.007

    Article  CAS  Google Scholar 

  23. B. Prasad, Tensile properties of some zinc-based alloys comprising 2.75% Al: effects of alloy microstructure, composition and test conditions. Mater. Sci. Eng. A 245(2), 257–266 (1998). https://doi.org/10.1016/S0921-5093(97)00723-5

    Article  Google Scholar 

  24. B. Prasad, A. Patwardhan, A. Yegneswaran, Dry sliding wear characteristics of some zinc-aluminium alloys: a comparative study with a conventional bearing bronze at a slow speed. Wear 199(1), 142–151 (1996). https://doi.org/10.1016/0043-1648(96)07231-6

    Article  CAS  Google Scholar 

  25. H. Gao, C. **ong, J. Yin et al., Research on dynamic accumulation effect and constitutive model of aluminum foams under dynamic impact. Inter Metalcast 13, 146–157 (2019). https://doi.org/10.1007/s40962-018-0245-0

    Article  CAS  Google Scholar 

  26. X. **a et al., Compressive properties of closed-cell aluminum foams with different contents of ceramic microspheres. Mater. Des. 1980–2015(56), 353–358 (2014). https://doi.org/10.1016/j.matdes.2013.11.040

    Article  CAS  Google Scholar 

  27. J.K. Khabushan et al., A study of fabricating and compressive properties of cellular Al–Si (355.0) foam using TiH2. Mater. Des. 55, 792–797 (2014). https://doi.org/10.1016/j.matdes.2013.10.022

    Article  CAS  Google Scholar 

  28. X. **a et al., The compressive properties of closed-cell aluminum foams with different Mn additions. Mater. Des. (2013). https://doi.org/10.1016/j.matdes.2013.11.040

    Article  Google Scholar 

  29. T. Mukai et al., Compressive response of a closed-cell aluminum foam at high strain rate. Scr. Mater. 54(4), 533–537 (2006). https://doi.org/10.1016/j.scriptamat.2005.10.062

    Article  CAS  Google Scholar 

  30. M.R. Farahani, H.R.R. Ashtiani, S. Elahi, Effect of silicon content on mechanical properties and progressive collapse behavior of closed-cell aluminum foams. Trans. Indian Inst. Metals 74, 3145–3154 (2021). https://doi.org/10.1007/s12666-021-02390-8

    Article  Google Scholar 

  31. M.R. Farahani, H.R. Rezaei Ashtiani, S.H. Elahi, Effect of zinc content on the mechanical properties of closed-cell aluminum foams. Inter Metalcast 16, 713–722 (2022). https://doi.org/10.1007/s40962-021-00635-2

    Article  CAS  Google Scholar 

  32. M.R. Farahani, H.R. Rezaei Ashtiani, S.H. Elahi, The effect of adding silicon and zinc elements on the mechanical properties of closed-cell aluminum-based foams. Inter Metalcast (2022). https://doi.org/10.1007/s40962-022-00827-4

    Article  Google Scholar 

  33. W. Deqing et al., Cell structure and compressive behavior of an aluminum foam. J. Mater. Sci. 40(13), 3475–3480 (2005). https://doi.org/10.1007/s10853-005-2852-4

    Article  CAS  Google Scholar 

  34. A. Bastawros, H. Bart-Smith, A. Evans, Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. J. Mech. Phys. Solids 48(2), 301–322 (2000). https://doi.org/10.1016/S0022-5096(99)00035-6

    Article  CAS  Google Scholar 

  35. A. Simone, L. Gibson, The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams. Acta Mater. 46(11), 3929–3935 (1998). https://doi.org/10.1016/S1359-6454(98)00072-X

    Article  CAS  Google Scholar 

  36. A.M. Kraynik et al., Foam Micromechanics (Sandia National Laboratories, Albuquerque, 1998)

    Google Scholar 

  37. B.Y. Hur, S.H. Park, A. Hiroshi, Viscosity and surface tension of Al and effects of additional element. Mater. Sci. Forum (2003). https://doi.org/10.4028/www.scientific.net/MSF.439.51

    Article  Google Scholar 

  38. D.-W. Li et al., Preparation and characterization of aluminum foams with ZrH2 as foaming agent. Trans. Nonferrous Met. Soc. China 21(2), 346–352 (2011). https://doi.org/10.1016/S1003-6326(11)60720-6

    Article  CAS  Google Scholar 

  39. M.H. Ghaleh, N. Ehsani, H.R. Baharvandi, High-porosity closed-cell aluminum foams produced by melting method without stabilizer particles. Inter Metalcast 15, 899–905 (2021). https://doi.org/10.1007/s40962-020-00528-w

    Article  CAS  Google Scholar 

  40. A. Haibel, A. Rack, J. Banhart, Why are metal foams stable? Appl. Phys. Lett. 89(15), 154102 (2006). https://doi.org/10.1063/1.2357931

    Article  CAS  Google Scholar 

  41. J. Banhart, Metal foams: production and stability. Adv. Eng. Mater. 8(9), 781–794 (2006). https://doi.org/10.1002/adem.200600071

    Article  CAS  Google Scholar 

  42. C. Körner, M. Arnold, R.F. Singer, Metal foam stabilization by oxide network particles. Mater. Sci. Eng. A 396(1–2), 28–40 (2005). https://doi.org/10.1016/j.msea.2005.01.001

    Article  CAS  Google Scholar 

  43. A. Ibrahim, Effect of material and processing parameters on the morphology of aluminium foams produced by the PM route (2005).

  44. J.R. Davis, Aluminum and Aluminum Alloys (ASM International, London, 1993)

    Google Scholar 

  45. J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater Sci. 46(6), 559–632 (2001). https://doi.org/10.1016/S0079-6425(00)00002-5

    Article  CAS  Google Scholar 

  46. W. Poole, E. Dowdle, Experimental measurements of damage evolution in Al-Si eutectic alloys. Scripta Mater. (1998). https://doi.org/10.1016/S1359-6462(98)00326-1

    Article  Google Scholar 

  47. M. Kiser, F. Zok, D. Wilkinson, Plastic flow and fracture of a particulate metal matrix composite. Acta Mater. 44(9), 3465–3476 (1996). https://doi.org/10.1016/1359-6454(96)00028-6

    Article  CAS  Google Scholar 

  48. W. Hunt Jr., J. Brockenbrough, P. Magnusen, An Al-Si-Mg composite model system: microstructural effects on deformation and damage evolution. Scr. Metall. Mater. 25(1), 15–20 (1991). https://doi.org/10.1016/0956-716X(91)90346-3

    Article  CAS  Google Scholar 

  49. H. Toda et al., Quantitative assessment of microstructure and its effects on compression behavior of aluminum foams via high-resolution synchrotron X-ray tomography. Metall. Mater. Trans. A. 37(4), 1211–1219 (2006). https://doi.org/10.1007/s11661-006-1072-0

    Article  Google Scholar 

  50. R.E. Raj, B. Daniel, Manufacturing challenges in obtaining tailor-made closed-cell structures in metallic foams. Int. J. Adv. Manuf. Technol. 38(5), 605–612 (2008). https://doi.org/10.1007/s00170-007-1254-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Rezaei Ashtiani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahani, M.R., Rezaei Ashtiani, H.R. & Elahi, S. Effect of Intermetallic Phases and Compounds on the Compressive Behavior and Fracture Mechanism of Al–Si–Zn Foams. Inter Metalcast 18, 403–416 (2024). https://doi.org/10.1007/s40962-023-01027-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01027-4

Keywords

Navigation