Log in

Capturing Polymer Chain Compression and Shock Driven Decomposition of Polytetrafluoroethylene During Dynamic Shock Compression with In Situ X-Ray Diffraction

  • SI: Diversity
  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

Observations of unit cell compression or decomposition during dynamic shock loading requires the implementation of a probe capable of penetrating an opaque and evolving sample at elevated pressures and temperatures. By pairing synchrotron generated high energy X-rays and gas gun driven plate impact, we were able to study the evolution of the structure in polytetrafluoroethylene (PTFE) at pressures spanning 1.84–52.9 GPa. Under the planar, one-dimensional, shockwave, the polymer was forced into an anisotropic conformation, in which the polymer chains assembled parallel to the shockwave. PTFE initially has a hexagonal crystal structure (Phase IV), once it was compressed above ~0.5 GPa it had a conformational change to the orthorhombic crystal structure (Phase III). The compression of the polymer chains was observed by X-ray diffraction, where the PTFE (110) peak shifted to higher q with increased pressure; polymer chain compression was still observed at 30.0 GPa. The highest pressure shot, at 52.9 GPa, above the reactants to products transition region, showed no new carbon species formation within the given time window and q-range. By following the orthorhombic lattice diffraction peak, we were able to calculate the Hugoniot loci of the crystalline and amorphous parts for each dynamic event (LA-UR-22-31436).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data is available upon request.

References

  1. Sperati CA, Starkweather HW (1961) Fluorine-containing polymers. II. Polytetrafluoroethylene. Fortschritte Der Hochpolymeren-Forschung. Springer, Berlin, pp 465–495

    Chapter  Google Scholar 

  2. Rae PJ, Dattelbaum DM (2004) The properties of poly(tetrafluoroethylene) (PTFE) in compression. Polymer 45(22):7615–7625. https://doi.org/10.1016/j.polymer.2004.08.064

    Article  CAS  Google Scholar 

  3. Rae PJ, Brown EN, Clements BE, Dattelbaum DM (2005) Pressure-induced phase change in poly(tetrafluoroethylene) at modest impact velocities. J Appl Phys https://doi.org/10.1063/1.2041845

    Google Scholar 

  4. Brown EN, Rae PJ, Trujuillo CP, Dattelbaum DM, Gray III GT, Bourne NK (2006) Shock and recovery of polytetrafluoroethylene above and below the phase II to phase III transition. AIP Conf Proc 845:196–199. https://doi.org/10.1063/1.2263297

    Article  CAS  Google Scholar 

  5. Brown EN, Clausen B, Brown DW (2007) In situ measurement of crystalline lattice strains in phase iv polytetrafluoroethylene. J Neutron Res 15(2):139–146. https://doi.org/10.1080/10238160701372620

    Article  CAS  Google Scholar 

  6. Brown EN, Rae PJ, Liu C (2007) Mixed-mode-I/II fracture of polytetrafluoroethylene. Mater Sci Eng A 468–470:253–258. https://doi.org/10.1016/j.msea.2006.09.125

    Article  CAS  Google Scholar 

  7. Brown EN, Dattelbaum DM (2005) The role of crystalline phase on fracture and microstructure evolution of polytetrafluoroethylene (PTFE). Polymer 46(9):3056–3068. https://doi.org/10.1016/j.polymer.2005.01.061

    Article  CAS  Google Scholar 

  8. Ahrens TJ, Asay JR, Shahinpoor M (1993) High pressure shock compression of solids. Shock wave and high pressure phenomena, vol 1. Springer, Berlin

    Google Scholar 

  9. Morris CE, Fritz JN, McQueen RG (1984) The equation of state of polytetrafluoroethylene to 80 GPa. J Chem Phys 80(10):5203–5218. https://doi.org/10.1063/1.446591

    Article  CAS  Google Scholar 

  10. Robbins DL, Sheffield SA, Alcon RR (2004) Magnetic particle velocity measurements of shocked Teflon. AIP Conf Proc 706:675–678. https://doi.org/10.1063/1.1780329

    Article  Google Scholar 

  11. Bourne NK, Gray GT (2003) Equation of state of polytetrafluoroethylene. J Appl Phys 93(11):8966–8969. https://doi.org/10.1063/1.1567821

    Article  CAS  Google Scholar 

  12. Carter WJ, Marsh SP (1995) Hugoniot equation of state of polymers. Technical report LA-13006-MS, Los Alamos National Laboratory

  13. Capatina D, D’Amico K, Nudell J, Collins J, Schmidt O (2016) DCS—a high flux beamline for time resolved dynamic compression science—design highlights. AIP Conf Proc 1741(1):030036. https://doi.org/10.1063/1.4952859

    Article  Google Scholar 

  14. Johnson Q, Mitchell A, Evans L (1971) X-ray diffraction evidence for crystalline order and isotropic compression during the shock-wave process. Nature 231:310–311

    Article  CAS  Google Scholar 

  15. Johnson Q, Mitchell AC (1972) First x-ray diffraction evidence for a phase transition during shock-wave compression. Phys Rev Lett 29(20):1369–1371. https://doi.org/10.1103/PhysRevLett.29.1369

    Article  CAS  Google Scholar 

  16. Johnson Q, Mitchell AC, Smith ID (1980) Flash x-ray tube for diffraction studies on a two-stage light-gas-gun. Rev Sci Instrum 51(6):741–749

    Article  CAS  Google Scholar 

  17. d’Almeida T, Di Michiel M, Kaiser M, Buslaps T, Fanget A (2002) Time-resolved x-ray diffraction measurements on CDS shocked along the c axis. J Appl Phys 92(3):1715–1717. https://doi.org/10.1063/1.1491601

    Article  CAS  Google Scholar 

  18. Gupta YM, Zimmerman KA, Rigg PA, Zaretsky EB, Savage DM, Bellamy PM (1999) Experimental developments to obtain real-time x-ray diffraction measurements in plate impact experiments. Rev Sci Instrum 70(10):4008–4014. https://doi.org/10.1063/1.1150026

    Article  CAS  Google Scholar 

  19. Jensen BJ, Gupta YM (2006) X-ray diffraction measurements in shock compressed magnesium doped LiF crystals. J Appl Phys https://doi.org/10.1063/1.2244524

    Google Scholar 

  20. Jensen BJ, Gupta YM (2008) Time-resolved x-ray diffraction experiments to examine the elastic-plastic transition in shocked magnesium-doped LiF. J Appl Phys https://doi.org/10.1063/1.2936899

    Google Scholar 

  21. Rigg PA, Gupta YM (1998) Real-time x-ray diffraction to examine elastic-plastic deformation in shocked lithium fluoride crystals. Appl Phys Lett 73(12):1655–1657. https://doi.org/10.1063/1.122236

    Article  CAS  Google Scholar 

  22. Rigg PA, Gupta YM (2003) Time-resolved x-ray diffraction measurements and analysis to investigate shocked lithium fluoride crystals. J Appl Phys 93(6):3291–3298. https://doi.org/10.1063/1.1556197

    Article  CAS  Google Scholar 

  23. Turneaure SJ, Gupta YM (2007) X-ray diffraction and continuum measurements in silicon crystals shocked below the elastic limit. Appl Phys Lett. https://doi.org/10.1063/1.2436638

    Article  Google Scholar 

  24. Turneaure SJ, Gupta YM (2011) Material strength determination in the shock compressed state using x-ray diffraction measurements. J Appl Phys. https://doi.org/10.1063/1.3597817

    Article  Google Scholar 

  25. Turneaure SJ, Gupta YM (2012) Real-time x-ray diffraction at the impact surface of shocked crystals. J Appl Phys. https://doi.org/10.1063/1.3674276

    Article  Google Scholar 

  26. Turneaure SJ, Gupta YM, Rigg P (2009) Shock induced phase change in KCL single crystals: orientation relations between the b1 and b2 lattices. J Appl Phys. https://doi.org/10.1063/1.3065522

    Article  Google Scholar 

  27. Zaretsky E (2003) Multipeak pulse x-ray diffraction study of shocked single crystals. J Appl Phys 93(5):2496–2506. https://doi.org/10.1063/1.1539284

    Article  CAS  Google Scholar 

  28. Turneaure SJ, Sharma SM, Volz TJ, Winey JM, Gupta YM (2017) Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Sci Adv. https://doi.org/10.1126/sciadv.aao3561

    Article  Google Scholar 

  29. Tracy SJ, Turneaure SJ, Duffy TS (2018) In situ x-ray diffraction of shock-compressed fused silica. Phys Rev Lett 120:135702. https://doi.org/10.1103/PhysRevLett.120.135702

    Article  CAS  Google Scholar 

  30. Renganathan P, Turneaure SJ, Sharma SM, Gupta YM (2019) Structural transformations including melting and recrystallization during shock compression and release of germanium up to 45 GPa. Phys Rev B 99:134101. https://doi.org/10.1103/PhysRevB.99.134101

    Article  CAS  Google Scholar 

  31. Bagge-Hansen M, Lauderbach L, Hodgin R, Bastea S, Fried L, Jones A, van Buuren T, Hansen D, Benterou J, May C, Graber T, Jensen BJ, Ilavsky J, Willey TM (2015) Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene. J Appl Phys 117:245902. https://doi.org/10.1063/1.4922866

    Article  CAS  Google Scholar 

  32. Watkins EB, Velizhanin KA, Dattelbaum DM, Gustavsen RL, Aslam TD, Podlesak DW, Huber RC, Firestone MA, Ringstrand BS, Willey TM, Bagge-Hansen M, Hodgin R, Lauderbach L, van Buuren T, Sinclair N, Rigg PA, Seifert S, Gog T (2017) Evolution of carbon clusters in the detonation products of the triaminotrinitrobenzene (TATB)-based explosive PBX 9502. J Phys Chem C 121(41):23129–23140. https://doi.org/10.1021/acs.jpcc.7b05637

    Article  CAS  Google Scholar 

  33. Firestone MA, Datelbaum DM, Podlesak DW, Gustavsen RL, Huber RC, Ringstrand BS, Watkins E, Jensen B, Willey T, Lauderbauch L, Hodgin R, Bagge-Hansen M, Seifert S, Graber T (2017) Structural evolution of detonation carbon in composition b-3 by x-ray scattering. AIP Conf Proc 1793:030010

    Article  Google Scholar 

  34. Huber RC, Peterson J, Coe JD, Dattelbaum DM, Gibson LL, Gustavsen RL, Lang JM, Sheffield SA (2020) Polysulfone shock compressed above the decomposition threshold: velocimetry and modeling of two-wave structures. J Appl Phys 127(10):105902. https://doi.org/10.1063/1.5124252

    Article  CAS  Google Scholar 

  35. Dattelbaum DM, Coe JD, Rigg PA, Scharff RJ, Gammel JT (2014) Shockwave response of two carbon fiber-polymer composites. J Appl Phys 116(19):194308. https://doi.org/10.1063/1.4898313

    Article  CAS  Google Scholar 

  36. Dattelbaum DM. High pressure phases of PTFE. Technical report (in preparation)

  37. Bunn CW, Cobbold AJ, Palmer RP (1958) The fine structure of polytetrafluoroethylene. J Polymer Sci XXVIII:363–376

    Google Scholar 

  38. Clark ES (1999) The molecular conformations OOF polytetrafluoroethylene: forms II and IV. Polymer 40:4659–4665

    Article  CAS  Google Scholar 

  39. Nakafuku C, Takemura T (1975) Crystal structure of high pressure phase of polytetrafluoroethylene. Jpn J Appl Phys 14(5):599–602

    Article  CAS  Google Scholar 

  40. Champion AR (1971) Shock compression of Teflon from 2.5 to 25 kbar-evidence for a shock-induced transition. J Appl Phys 42(13):5546–5550. https://doi.org/10.1063/1.1659978

    Article  CAS  Google Scholar 

  41. Brown EN, Trujillo CP, Gray GT, Rae PJ, Bourne NK (2007) Soft recovery of polytetrafluoroethylene shocked through the crystalline phase II–III transition. J Appl Phys 101(2):024916. https://doi.org/10.1063/1.2424536

    Article  CAS  Google Scholar 

  42. Bourne NK, Millett JCF, Brown EN, Gray GT (2007) Effect of halogenation on the shock properties of semicrystalline thermoplastics. J Appl Phys 102(6):063510. https://doi.org/10.1063/1.2778746

    Article  CAS  Google Scholar 

  43. Molodets SAM (2013) Equation of state of polytetrafluoroethylene for calculating shock compression parameters at megabar pressures. Combust Explos Shock Waves 49(6):731–738

    Article  Google Scholar 

  44. Huber RC, Watkins EB, Dattelbaum DM, Bartram BD, Gibson LL, Gustavsen RL (2021) In situ x-ray diffraction of high density polyethylene during dynamic drive: polymer chain compression and decomposition. J Appl Phys 130(17):175901. https://doi.org/10.1063/5.0057439

    Article  CAS  Google Scholar 

  45. Prescher C, Prakapenka VB (2015) Dioptas: a program for reduction of two-dimensional x-ray diffraction data and data exploration. High Press Res 35(3):223–230. https://doi.org/10.1080/08957959.2015.1059835

    Article  CAS  Google Scholar 

  46. Strand OT, Goosman DR, Martinez C, Whitworth TL, Kuhlow WW (2006) Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Instrum 77(8):083108. https://doi.org/10.1063/1.2336749

    Article  CAS  Google Scholar 

  47. Benjamin AS, Ahart M, Gramsch SA, Stevens LL, Orler EB, Dattelbaum DM, Hemley RJ (2012) Acoustic properties of Kel F-800 copolymer up to 85 GPa. J Chem Phys 137(1):014514. https://doi.org/10.1063/1.4731706

    Article  CAS  Google Scholar 

  48. Fontana L, Vinh DQ, Santoro M, Scandolo S, Gorelli FA, Bini R, Hanfland M (2007) High-pressure crystalline polyethylene studied by x-ray diffraction and ab initio simulations. Phys Rev B. https://doi.org/10.1103/PhysRevB.75.174112

    Article  Google Scholar 

  49. Wu C-K, Nicol M (1973) Raman spectra of high pressure phase and phase transition of polytetrafluoroethylene (Teflon). Chem Phys Lett 21(1):153–157. https://doi.org/10.1016/0009-2614(73)80036-3

    Article  CAS  Google Scholar 

  50. Lorenzen M, Hanfland M, Mermet A (2003) Poly(tetrafluoroethylene) under pressure: X-diffraction studies. Nucl Instrum Methods Phys Res Sect B 200:416–420

    Article  CAS  Google Scholar 

  51. Rae PJ, Brown EN (2005) The properties of poly(tetrafluoroethylene) (PTFE) in tension. Polymer 46(19):8128–8140. https://doi.org/10.1016/j.polymer.2005.06.120

    Article  CAS  Google Scholar 

  52. Koo GP (1969) Cold drawing behavior of polytetrafluoroethylene. PhD thesis, Stevens Institute of Technology

Download references

Acknowledgements

The results in this work were supported by the DOE/NNSA Dynamic Materials Properties Campaign. This publication is based upon work performed at the Dynamic Compression Sector, which is operated by the Washington State University under the U.S. Department of Energy (DOE)/National Nuclear Security Administration Award No. DE-NA0003957. This research used resources of the Advanced Photon Source, a DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This work was conducted at Los Alamos National Laboratory, an affirmative action/equal opportunity employer, which is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52- 06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Huber.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest (financial or non-financial).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huber, R.C., Watkins, E.B., Jordan, J.L. et al. Capturing Polymer Chain Compression and Shock Driven Decomposition of Polytetrafluoroethylene During Dynamic Shock Compression with In Situ X-Ray Diffraction. J. dynamic behavior mater. (2023). https://doi.org/10.1007/s40870-023-00391-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40870-023-00391-w

Keywords

Navigation