Log in

Differential Transform Method: A Tool for Solving Fuzzy Differential Equations

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work we use a decomposition method which is called differential transform method (DTM) to obtain the numerical or analytical solutions of fuzzy differential equations. The DTM has been applied to many nonlinear differential equations of integer order as well as fractional orders. Here by considering strongly generalized differentiable of fuzzy differential equations we obtain all possible solution of given equations by DTM. Two examples are presented to show the capacity of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbasbandy, S., Allahviranloo, T.: Numerical solutions of fuzzy differential equations by Taylor method. Comput. Methods Appl. Math. 2, 113–124 (2002)

    Article  MathSciNet  Google Scholar 

  2. Allahviranloo, T., Ahmady, N., Ahmady, E.: Numerical solution of fuzzy differential equations by predictor–corrector method. Inf. Sci. 177(7), 1633–1647 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bede, B., Rudas, I.J., Bencsik, A.L.: First order linear fuzzy differential equations under generalized differentiability. Inf. Sci. 177, 1648–1662 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buckley, J.J.: Simulating Continuous Fuzzy Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Buckley, J.J., Feuring, T.: Introduction to fuzzy partial differential equations. Fuzzy Sets Syst. 105, 241–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buckley, J.J., Feuring, T.: Fuzzy differential equations. Fuzzy Sets Syst. 110, 43–54 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, S.L., Zadeh, L.A.: On fuzzy map** and control. IEEE Trans. Syst. Man Cybern. 2, 330–340 (1972)

    MathSciNet  Google Scholar 

  8. Congxin, W., Shiji, S.: Existence theorem to the Cauchy problem of fuzzy differential equations under compactness-type conditions. Inf. Sci. 108, 123–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, Z., Ma, M., Kandel, A.: Existence of the solutions of fuzzy differential equations with parameters. Inf. Sci. 99, 205–217 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dubois, D., prade, H.: Towards fuzzy differential calculus: part 3, differentiation. Fuzzy Sets Syst. 8, 225–233 (1982)

    Article  MATH  Google Scholar 

  11. Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets Syst. 18, 31–43 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, O., Yi, W.: On fuzzy differential equations. Fuzzy Sets Syst. 24, 321–325 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jowers, L.J., Buckley, J.J., Reilly, K.D.: Simulating continuous fuzzy systems. Inf. Sci. 177, 436–448 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaleva, O.: Fuzzy differential equations. Fuzzy Sets Syst. 24, 301–317 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kaleva, O.: The Cauchy problem for fuzzy differential equations. Fuzzy Sets Syst. 35, 389–396 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kandel, A.: Fuzzy dynamical systems and the nature of their solutions. In: Wang, P.P., Chang, S.K. (eds.) Fuzzy Sets Theory and Application to Policy Analysis and Information Systems, pp. 93–122. Plenum Press, New York (1980)

    Google Scholar 

  17. Kandel, A., Byatt, W.J.: Fuzzy differential equations. In: Proceedings of the International Conference on Cybernetics and Society, Tokyo, November, pp. 1213–1216 (1978)

  18. Kloeden, P.: Remarks on peano-like theorems for fuzzy differential equations. Fuzzy Sets Syst. 44, 161–164 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Menda, W.: Linear fuzzy differential equation systems on R1. J. Fuzzy Syst. Math. 2, 51–56 (1988) (in Chinese)

  20. Park, J.Y., Kwan, Y.C., Jeong, J.V.: Existence of solutions of fuzzy integral equations in Banaeh spaces. Fuzzy Sets Syst. 72, 373–378 (1995)

    Article  Google Scholar 

  21. Seikkala, S.: On the fuzzy initial value problem. Fuzzy Sets Syst. 24, 319–330 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nematollah Kadkhoda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadkhoda, N., Roushan, S.S. & Jafari, H. Differential Transform Method: A Tool for Solving Fuzzy Differential Equations. Int. J. Appl. Comput. Math 4, 33 (2018). https://doi.org/10.1007/s40819-017-0471-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-017-0471-9

Keywords

Navigation