Log in

SiPMs and examples of applications for low light detection in particle and astroparticle physics

  • Review Paper
  • Published:
La Rivista del Nuovo Cimento Aims and scope

Abstract

Silicon Photomultipliers (SiPMs) have emerged as leading photon detectors in experimental physics since their introduction in the late 1990s. With performance characteristics superior to those of traditional photodetectors, SiPMs exhibit up to 60% photon detection efficiency, rapid signal rise times, and resistance to magnetic fields. Their solid-state construction enables mass production, compactness, and high spatial resolution, facilitating their integration into a wide range of experimental setups. Although susceptible to radiation damage, mitigation strategies are being studied to allow their reliable operation even in environments with elevated radiation levels. SiPMs excel in detecting low levels of light, making them well suited for applications involving scintillation and Cherenkov light. Their ability to operate effectively at cryogenic temperatures allows the construction of a new class of multi-tons rare event search experiments such as Darkside-20k. Insensitivity to the magnetic field and mitigation of the radiation damages are making SiPMs well-suited to be used in accelerator driven physics such as Cherenkov light detectors for Particle IDentification (PID) in the future Electron Ion Collider (EIC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. C.E. Aalseth, F. Acerbi, P. Agnes, I.F.M. Albuquerque, T. Alexander, A. Alici, A.K. Alton, P. Antonioli, S. Arcelli, R. Ardito, I.J. Arnquist, D.M. Asner, M. Ave, H.O. Back, A.I.B. Olmedo, G. Batignani, E. Bertoldo, S. Bettarini, M.G. Bisogni, V. Bocci, A. Bondar, G. Bonfini, W. Bonivento, M. Bossa, B. Bottino, M. Boulay, R. Bunker, S. Bussino, A. Buzulutskov, M. Cadeddu, M. Cadoni, A. Caminata, N. Canci, A. Candela, C. Cantini, M. Caravati, M. Cariello, M. Carlini, M. Carpinelli, A. Castellani, S. Catalanotti, V. Cataudella, P. Cavalcante, S. Cavuoti, R. Cereseto, A. Chepurnov, C. Cicalò, L. Cifarelli, M. Citterio, A.G. Cocco, M. Colocci, S. Corgiolu, G. Covone, P. Crivelli, I. D’Antone, M. D’Incecco, D. D’Urso, M.D.D.R. Rolo, M. Daniel, S. Davini, A. Candia, S.D. Cecco, M.D. Deo, G.D. Filippis, G.D. Guido, G.D. Rosa, G. Dellacasa, M.D. Valle, P. Demontis, A. Derbin, A. Devoto, F.D. Eusanio, G.D. Pietro, C. Dionisi, A. Dolgov, I. Dormia, S. Dussoni, A. Empl, M.F. Diaz, A. Ferri, C. Filip, G. Fiorillo, K. Fomenko, D. Franco, G.E. Froudakis, F. Gabriele, A. Gabrieli, C. Galbiati, P.G. Abia, A. Gendotti, A. Ghisi, S. Giagu, P. Giampa, G. Gibertoni, C. Giganti, M.A. Giorgi, G.K. Giovanetti, M.L. Gligan, A. Gola, O. Gorchakov, A.M. Goretti, F. Granato, M. Grassi, J.W. Grate, G.Y. Grigoriev, M. Gromov, M. Guan, M.B.B. Guerra, M. Guerzoni, M. Gulino, R.K. Haaland, A. Hallin, B. Harrop, E.W. Hoppe, S. Horikawa, B. Hosseini, D. Hughes, P. Humble, E.V. Hungerford, A. Ianni, C. Jillings, T.N. Johnson, K. Keeter, C.L. Kendziora, S. Kim, G. Koh, D. Korablev, G. Korga, A. Kubankin, M. Kuss, M. Kuzniak, M.L. Commara, B. Lehnert, X. Li, M. Lissia, G.U. Lodi, B. Loer, G. Longo, P. Loverre, R. Lussana, L. Luzzi, Y. Ma, A.A. Machado, I.N. Machulin, A. Mandarano, L. Mapelli, M. Marcante, A. Margotti, S.M. Mari, M. Mariani, J. Maricic, C.J. Martoff, M. Mascia, M. Mayer, A.B. McDonald, A. Messina, P.D. Meyers, R. Milincic, A. Moggi, S. Moioli, J. Monroe, A. Monte, M. Morrocchi, B.J. Mount, W. Mu, V.N. Muratova, S. Murphy, P. Musico, R. Nania, A.N. Agasson, I. Nikulin, V. Nosov, A.O. Nozdrina, N.N. Nurakhov, A. Oleinik, V. Oleynikov, M. Orsini, F. Ortica, L. Pagani, M. Pallavicini, S. Palmas, L. Pandola, E. Pantic, E. Paoloni, G. Paternoster, V. Pavletcov, F. Pazzona, S. Peeters, K. Pelczar, L.A. Pellegrini, N. Pelliccia, F. Perotti, R. Perruzza, V. Pesudo, C. Piemonte, F. Pilo, A. Pocar, T. Pollmann, D. Portaluppi, D.A. Pugachev, H. Qian, B. Radics, F. Raffaelli, F. Ragusa, M. Razeti, A. Razeto, V. Regazzoni, C. Regenfus, B. Reinhold, A.L. Renshaw, M. Rescigno, F. Retière, Q. Riffard, A. Rivetti, S. Rizzardini, A. Romani, L. Romero, B. Rossi, N. Rossi, A. Rubbia, D. Sablone, P. Salatino, O. Samoylov, E.S. García, W. Sands, S. Sanfilippo, M. Sant, R. Santorelli, C. Savarese, E. Scapparone, B. Schlitzer, G. Scioli, E. Segreto, A. Seifert, D.A. Semenov, A. Shchagin, L. Shekhtman, E. Shemyakina, A. Sheshukov, M. Simeone, P.N. Singh, P. Skensved, M.D. Skorokhvatov, O. Smirnov, G. Sobrero, A. Sokolov, A. Sotnikov, F. Speziale, R. Stainforth, C. Stanford, G.B. Suffritti, Y. Suvorov, R. Tartaglia, G. Testera, A. Tonazzo, A. Tosi, P. Trinchese, E.V. Unzhakov, A. Vacca, E. Vázquez-Jáuregui, M. Verducci, T. Viant, F. Villa, A. Vishneva, B. Vogelaar, M. Wada, J. Wahl, J. Walding, H. Wang, Y. Wang, A.W. Watson, S. Westerdale, R. Williams, M.M. Wojcik, S. Wu, X. **ang, X. **ao, C. Yang, Z. Ye, A.Y. Llano, F. Zappa, G. Zappalà, C. Zhu, A. Zichichi, M. Zullo, A. Zullo, G. Zuzel, DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. Eur. Phys. J. Plus 133(3), (2018). https://doi.org/10.1140/epjp/i2018-11973-4

  2. E.C. Aschenauer, S. Fazio, J.H. Lee, H. Mäntysaari, B.S. Page, B. Schenke, T. Ullrich, R. Venugopalan, P. Zurita, The electron–ion collider: assessing the energy dependence of key measurements (2017)

  3. ePIC Web Page. https://www.bnl.gov/eic/epic.php

  4. J.P. Boutot, J. Nussli, D. Vallat, Recent trends in photomultipliers for nuclear physics, in Advances in Electronics and Electron Physics, vol. 60, (Academic Press, 1983), pp. 223–305. https://doi.org/10.1016/S0065-2539(08)60891-4 . https://www.sciencedirect.com/science/article/pii/S0065253908608914

  5. K. Abe, Y. Chen, K. Hiraide, K. Ichimura, S. Imaizumi, N. Kato, Y. Kishimoto, K. Kobayashi, M. Kobayashi, S. Moriyama, M. Nakahata, K. Sato, H. Sekiya, T. Suzuki, A. Takeda, S. Tasaka, M. Yamashita, B.S. Yang, N.Y. Kim, Y.D. Kim, Y.H. Kim, R. Ishii, Y. Itow, K. Kanzawa, K. Masuda, K. Martens, A. Mason, Y. Suzuki, K. Miuchi, Y. Takeuchi, K.B. Lee, M.K. Lee, Y. Fukuda, H. Ogawa, K. Nishijima, K. Fushimi, B.D. Xu, S. Nakamura, Development of low-background photomultiplier tubes for liquid xenon detectors. J. Instrum. 15(09), 09027–09027 (2020). https://doi.org/10.1088/1748-0221/15/09/p09027

    Article  Google Scholar 

  6. K. Abe, K. Hiraide, K. Ichimura, Y. Kishimoto, K. Kobayashi, M. Kobayashi, S. Moriyama, M. Nakahata, T. Norita, H. Ogawa, K. Sato, H. Sekiya, O. Takachio, A. Takeda, S. Tasaka, M. Yamashita, B.S. Yang, N.Y. Kim, Y.D. Kim, Y. Itow, K. Kanzawa, R. Kegasa, K. Masuda, H. Takiya, K. Fushimi, G. Kanzaki, K. Martens, Y. Suzuki, B.D. Xu, R. Fujita, K. Hosokawa, K. Miuchi, N. Oka, Y. Takeuchi, Y.H. Kim, K.B. Lee, M.K. Lee, Y. Fukuda, M. Miyasaka, K. Nishijima, S. Nakamura, Development of low radioactivity photomultiplier tubes for the XMASS-i detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 922, 171–176 (2019). https://doi.org/10.1016/j.nima.2018.12.083

    Article  ADS  Google Scholar 

  7. T. Toizumi, S. Inagawa, T. Nakamori, J. Kataoka, Y. Tsubuku, Y. Yatsu, T. Shimokawabe, N. Kawai, T. Okada, I. Ohtsu, Performance of a multi-anode photomultiplier employing an ultra bi-alkali photo-cathode and rugged dynodes. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 604(1), 168–173 (2009). https://doi.org/10.1016/j.nima.2009.01.063. (PSD8)

    Article  ADS  Google Scholar 

  8. T. Francke, V. Peskov, Photosensitive gaseous detectors and their applications. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 525(1), 1–5 (2004) https://doi.org/10.1016/j.nima.2004.03.017 . Proceedings of the International Conference on Imaging Techniques in Subatomic Physics, Astrophysics, Medicine, Biology and Industry

  9. J. Seguinot, T. Ypsilantis, Photo-ionization and cherenkov ring imaging. Nuclear Instrum. Methods 142(3), 377–391 (1977). https://doi.org/10.1016/0029-554X(77)90671-1

    Article  ADS  Google Scholar 

  10. D. Czerwinski, A. Deloff, K. Karpio, S. Kozak, L. Lukaszek, H. Malinowski, T. Siemiarczuk, G. Stefanek, L. Tykarski, G. Wilk, Alice Technical Design Report of the High Momentum Particle Identification Detector (1998)

  11. R. Chechik, A. Breskin, Advances in gaseous photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 595(1), 116–127 (2008). https://doi.org/10.1016/j.nima.2008.07.035. (RICH 2007)

    Article  ADS  Google Scholar 

  12. F. Sauli, Gem: A new concept for electron amplification in gas detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 386(2), 531–534 (1997). https://doi.org/10.1016/S0168-9002(96)01172-2

    Article  ADS  Google Scholar 

  13. Y. Giomataris, P. Rebourgeard, J.P. Robert, G. Charpak, Micromegas: a high-granularity position-sensitive gaseous detector for high particle-flux environments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 376(1), 29–35 (1996). https://doi.org/10.1016/0168-9002(96)00175-1

    Article  ADS  Google Scholar 

  14. A. Breskin, D. Mörmann, A. Lyashenko, R. Chechik, F.D. Amaro, J.M. Maia, J.F.C.A. Veloso, J.M.F. dos Santos, Ion-induced effects in gem and gem/mhsp gaseous photomultipliers for the uv and the visible spectral range. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 553(1), 46–52 (2005). https://doi.org/10.1016/j.nima.2005.08.005. (Proceedings of the fifth International Workshop on Ring Imaging Detectors)

    Article  ADS  Google Scholar 

  15. A. Bressan, S. Carrato, C. Chatterjee, A. Cicuttin, M.L. Crespo, D. D’Ago, S.D. Torre, S. Dasgupta, M.G.B. Escobar, W.F. Samayoa, L.G. Ordóñez, M. Gregori, G. Hamar, A. Kosoveu, S. Levorato, K. Mannatunga, A. Martin, F. Tessarotto, Valinoti B. Triloki, The high voltage system the novel mpgd-based photon detectors of compass rich-1 and its development towards a scalable hvpss for mpgds. J. Instrum. 18(07), 07014 (2023). https://doi.org/10.1088/1748-0221/18/07/C07014

    Article  Google Scholar 

  16. F. Tokanai, T. Sumiyoshi, H. Sugiyama, T. Okada, N. Ohishi, T. Ohmura, H. Sakurai, S. Gunji, Development of gaseous pmt with micropattern gas detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 610(1), 164–168 (2009). https://doi.org/10.1016/j.nima.2009.05.111. (New Developments In Photodetection NDIP08)

    Article  ADS  Google Scholar 

  17. A. Di Mauro, Status and perspectives of gaseous photon detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 766, 126–132 (2014). https://doi.org/10.1016/j.nima.2014.07.008. (RICH2013 Proceedings of the Eighth International Workshop on Ring Imaging Cherenkov Detectors Shonan, Kanagawa, Japan, December 2-6, 2013)

    Article  ADS  Google Scholar 

  18. L.R. Testardi, Destruction of superconductivity by laser light. Phys. Rev. B 4, 2189–2196 (1971). https://doi.org/10.1103/PhysRevB.4.2189

    Article  ADS  Google Scholar 

  19. H. Shibata, H. Takesue, T. Honjo, T. Akazaki, Y. Tokura, Single-photon detection using magnesium diboride superconducting nanowires. Appl. Phys. Lett. 97(21), 212504 (2010). https://doi.org/10.1063/1.3518723

    Article  ADS  Google Scholar 

  20. L. You, Superconducting nanowire single-photon detectors for quantum information. Nanophotonics 9(9), 2673–2692 (2020). https://doi.org/10.1515/nanoph-2020-0186

    Article  Google Scholar 

  21. B. Baek, K.S. McKay, M.J. Stevens, J. Kim, H.H. Hogue, S.W. Nam, Single-photon detection timing jitter in a visible light photon counter. IEEE J. Quant. Electron. 46(6), 991–995 (2010). https://doi.org/10.1109/JQE.2010.2042141

    Article  ADS  Google Scholar 

  22. J. Kim, S. Takeuchi, Y. Yamamoto, H.H. Hogue, Multiphoton detection using visible light photon counter. Appl. Phys. Lett. 74(7), 902–904 (1999). https://doi.org/10.1063/1.123404

    Article  ADS  Google Scholar 

  23. K. Wyllie, The lhcb rich photon detector system. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 591(1), 260–263 (2008). https://doi.org/10.1016/j.nima.2008.03.069. (Radiation Imaging Detectors 2007)

    Article  ADS  Google Scholar 

  24. S. Korpar, I. Adachi, N. Hamada, M. Higuchi, T. Iijima, S. Iwata, H. Kakuno, H. Kawai, P. Križan, S. Nishida, S. Ogawa, R. Pestotnik, L. Šantelj, A. Stanovnik, A. Seljak, T. Sumiyoshi, M. Tabata, E. Tahirovič, K. Yoshida, Y. Yusa, A 144-channel hapd for the aerogel rich at belle ii. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 766, 145–147 (2014). https://doi.org/10.1016/j.nima.2014.05.060. (RICH2013 Proceedings of the Eighth International Workshop on Ring Imaging Cherenkov Detectors Shonan, Kanagawa, Japan, December 2-6, 2013)

    Article  ADS  Google Scholar 

  25. R.J. McIntyre, Theory of microplasma instability in silicon. J. Appl. Phys. 32(6), 983–995 (2004). https://doi.org/10.1063/1.1736199

    Article  ADS  Google Scholar 

  26. R.J. McIntyre, Recent developments in silicon avalanche photodiodes. Measurement 3(4), 146–152 (1985). https://doi.org/10.1016/0263-2241(85)90024-7

    Article  ADS  Google Scholar 

  27. F. Acerbi, S. Gundacker, Understanding and simulating sipms. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 926, 16–35 (2019). https://doi.org/10.1016/j.nima.2018.11.118. (Silicon Photomultipliers: Technology, Characterisation and Applications)

    Article  ADS  Google Scholar 

  28. W.G. Oldham, R.R. Samuelson, P. Antognetti, Triggering phenomena in avalanche diodes. IEEE Trans. Electron Devices 19(9), 1056–1060 (1972). https://doi.org/10.1109/T-ED.1972.17544

    Article  ADS  Google Scholar 

  29. W. Maes, K. De Meyer, R. Van Overstraeten, Impact ionization in silicon: a review and update. Solid-State Electron. 33(6), 705–718 (1990). https://doi.org/10.1016/0038-1101(90)90183-F

    Article  ADS  Google Scholar 

  30. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Avalanche photodiodes and quenching circuits for single-photon detection. Appl. Opt. 35(12), 1956–1976 (1996)

    Article  ADS  Google Scholar 

  31. R. Klanner, Characterisation of sipms. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 926, 36–56 (2019). https://doi.org/10.1016/j.nima.2018.11.083. (Silicon Photomultipliers: Technology, Characterisation and Applications)

    Article  ADS  Google Scholar 

  32. O. Marinov, M.J. Deen, J.A. Jimenez Tejada, Theory of microplasma fluctuations and noise in silicon diode in avalanche breakdown. J. Appl. Phys. 101(6), 064515 (2007). https://doi.org/10.1063/1.2654973. https://pubs.aip.org/aip/jap/article-pdf/doi/10.1063/1.2654973/14991144/064515_1_online.pdf

  33. V. Chmill, E. Garutti, R. Klanner, M. Nitschke, J. Schwandt, Study of the breakdown voltage of sipms. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 845, 56–59 (2017). https://doi.org/10.1016/j.nima.2016.04.047. (Proceedings of the Vienna Conference on Instrumentation 2016)

    Article  ADS  Google Scholar 

  34. F. Signorelli, F. Telesca, E. Conca, A.D. Frera, A. Ruggeri, A. Giudice, A. Tosi, Ingaas/inp spad detecting single photons at 1550 nm with up to 50 efficiency and low noise. in 2021 IEEE International Electron Devices Meeting (IEDM), (2021) pp. 20–312034. https://doi.org/10.1109/IEDM19574.2021.9720559

  35. T. Nagano, K. Sato, A. Ishida, T. Baba, R. Tsuchiya, K. Yamamoto, Timing resolution improvement of mppc for tof-pet imaging. in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), (2012) pp. 1577–1580. https://doi.org/10.1109/NSSMIC.2012.6551376

  36. M. Liu, B. Liu, J. Hu, D. Li, J. Ma, Z. Chu, R. Ma, Z. Zhu, A 16-channel analog cmos sipm with on-chip front-end for d-tof lidar. IEEE Trans. Circ. Syst. I Regular Papers 69(6), 2376–2386 (2022). https://doi.org/10.1109/TCSI.2022.3160265

    Article  Google Scholar 

  37. A. Eshkoli, Y. Nemirovsky, Characterization and architecture of monolithic n\(^+\)p-cmos-sipm array for tof measurements. IEEE Trans. Instrum. Meas. 70, 1–9 (2021). https://doi.org/10.1109/TIM.2020.3045204

    Article  Google Scholar 

  38. T. Takahashi, Semiconductor Devices, in Encyclopedia of condensed matter physics. ed. by F. Bassani, G.L. Liedl, P. Wyder (Elsevier, Oxford, 2005), pp.264–273

    Chapter  Google Scholar 

  39. G. Eigen, Gain stabilization of sipms and afterpulsing. J. Phys. Conf. Ser. 1162(1), 012013 (2019). https://doi.org/10.1088/1742-6596/1162/1/012013

    Article  MathSciNet  Google Scholar 

  40. F. Acerbi, A. Gola, V. Regazzoni, G. Paternoster, G. Borghi, N. Zorzi, C. Piemonte, High efficiency, ultra-high-density silicon photomultipliers. IEEE J. Select. Top. Quant. Electron. 24(2), 1–8 (2018). https://doi.org/10.1109/JSTQE.2017.2748927

    Article  Google Scholar 

  41. V. Chmill, E. Garutti, R. Klanner, M. Nitschke, J. Schwandt, Study of the breakdown voltage of SiPMs. Nucl. Instrum. Meth. A 845, 56–59 (2017). https://doi.org/10.1016/j.nima.2016.04.047. ar**v:1605.01692 [physics.ins-det]

  42. S. Gundacker, R.M. Turtos, N. Kratochwil, R.H. Pots, M. Paganoni, P. Lecoq, E. Auffray, Experimental time resolution limits of modern sipms and tof-pet detectors exploring different scintillators and cherenkov emission. Phys. Med. Biol. 65(2), 025001 (2020). https://doi.org/10.1088/1361-6560/ab63b4

    Article  Google Scholar 

  43. F. Carnesecchi, G. Vignola, N. Agrawal, A. Alici, P. Antonioli, S. Arcelli, F. Bellini, D. Cavazza, L. Cifarelli, M. Colocci, S. Durando, F. Ercolessi, M. Garbini, M. Giacalone, D. Hatzifotiadou, N. Jacazio, A. Margotti, G. Malfattore, R. Nania, F. Noferini, O. Pinazza, R. Preghenella, R. Ricci, L. Rignanese, N. Rubini, E. Scapparone, G. Scioli, S. Strazzi, S. Tripathy, A. Zichichi, Direct detection of charged particles with sipms. J. Instrum. 17(06), 06007 (2022). https://doi.org/10.1088/1748-0221/17/06/P06007

    Article  Google Scholar 

  44. F. Acerbi, A. Ferri, A. Gola, M. Cazzanelli, L. Pavesi, N. Zorzi, C. Piemonte, Characterization of single-photon time resolution: From single spad to silicon photomultiplier. IEEE Trans. Nuclear Sci. 61(5), 2678–2686 (2014). https://doi.org/10.1109/TNS.2014.2347131

    Article  ADS  Google Scholar 

  45. G. Gallina, F. Retière, P. Giampa, J. Kroeger, P. Margetak, S. Byrne Mamahit, A. De St. Croix, F. Edaltafar, L. Martin, N. Massacret, M. Ward, G. Zhang, Characterization of sipm avalanche triggering probabilities. IEEE Trans. Electron Devices 66(10), 4228–4234 (2019) https://doi.org/10.1109/TED.2019.2935690

  46. C. Zhang, G. Zhang, X. Cao, Y. Yang, L. Wang, L. Liu, C. Li, L. Li, Methodology for measuring the fill factor of silicon photomultipliers. Measurement 213, 112720 (2023). https://doi.org/10.1016/j.measurement.2023.112720

    Article  Google Scholar 

  47. G. Zappalà, F. Acerbi, A. Ferri, A. Gola, G. Paternoster, V. Regazzoni, N. Zorzi, C. Piemonte, Study of the photo-detection efficiency of fbk high-density silicon photomultipliers. J. Instrum. 11(11), 11010 (2016). https://doi.org/10.1088/1748-0221/11/11/P11010

    Article  Google Scholar 

  48. S. Merzi, S.E. Brunner, A. Gola, A. Inglese, A. Mazzi, G. Paternoster, M. Penna, C. Piemonte, M. Ruzzarin, Nuv-hd sipms with metal-filled trenches. J. Instrum. 18(05), 05040 (2023). https://doi.org/10.1088/1748-0221/18/05/P05040

    Article  Google Scholar 

  49. T. Pershing, J. Xu, E. Bernard, J. Kingston, E. Mizrachi, J. Brodsky, A. Razeto, P. Kachru, A. Bernstein, E. Pantic, I. Jovanovic, Performance of hamamatsu vuv4 sipms for detecting liquid argon scintillation. J. Instrum. 17(04), 04017 (2022). https://doi.org/10.1088/1748-0221/17/04/P04017

    Article  Google Scholar 

  50. A. Ferri, F. Acerbi, A. Gola, G. Paternoster, C. Piemonte, N. Zorzi, Performance of fbk low-afterpulse nuv silicon photomultipliers for pet application. J. Instrum. 11(03), 03023 (2016). https://doi.org/10.1088/1748-0221/11/03/P03023

    Article  Google Scholar 

  51. P. Kachru, Laser-driven secondary photon emission of Silicon Photomultipliers. PoS TAUP2023, 102 (2024). https://doi.org/10.22323/1.441.0102

  52. P. Eckert, H.-C. Schultz-Coulon, W. Shen, R. Stamen, A. Tadday, Characterisation studies of silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 620(2), 217–226 (2010). https://doi.org/10.1016/j.nima.2010.03.169

    Article  ADS  Google Scholar 

  53. A. Gola, F. Acerbi, M. Capasso, M. Marcante, A. Mazzi, G. Paternoster, C. Piemonte, V. Regazzoni, N. Zorzi, Nuv-sensitive silicon photomultiplier technologies developed at fondazione bruno kessler. Sensors 19(2), 308 (2019). https://doi.org/10.3390/s19020308

    Article  ADS  Google Scholar 

  54. A.N. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, A. Thea, A measurement of the photon detection efficiency of silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 567(1), 360–363 (2006). https://doi.org/10.1016/j.nima.2006.05.145. (Proceedings of the 4th International Conference on New Developments in Photodetection)

    Article  ADS  Google Scholar 

  55. F. Nagy, G. Hegyesi, G. Kalinka, J. Molnár, A model based dc analysis of sipm breakdown voltages. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 849, 55–59 (2017). https://doi.org/10.1016/j.nima.2017.01.002

    Article  ADS  Google Scholar 

  56. F. Ciciriello, F. Corsi, F. Licciulli, C. Marzocca, G. Matarrese, A. Del Guerra, M.G. Bisogni, Accurate modeling of sipm detectors coupled to fe electronics for timing performance analysis. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 718, 331–333 (2013). https://doi.org/10.1016/j.nima.2012.10.103. (Proceedings of the 12th Pisa Meeting on Advanced Detectors)

    Article  ADS  Google Scholar 

  57. F. Corsi, C. Marzocca, A. Perrotta, A. Dragone, M. Foresta, A. Del Guerra, S. Marcatili, G. Llosa, G. Collazzuol, G.F.D. Betta, N. Dinu, C. Piemonte, G.U. Pignatel, G. Levi, Electrical characterization of silicon photo-multiplier detectors for optimal front-end design. in 2006 IEEE Nuclear Science Symposium Conference Record, vol. 2, (2006) pp. 1276–1280. https://doi.org/10.1109/NSSMIC.2006.356076

  58. F. Villa, Y. Zou, A. Dalla Mora, A. Tosi, F. Zappa, Spice electrical models and simulations of silicon photomultipliers. IEEE Trans. Nuclear Sci. 62(5), 1950–1960 (2015). https://doi.org/10.1109/TNS.2015.2477716

    Article  ADS  Google Scholar 

  59. D. Marano, M. Belluso, G. Bonanno, S. Billotta, A. Grillo, S. Garozzo, G. Romeo, O. Catalano, G. La Rosa, G. Sottile, D. Impiombato, S. Giarrusso, Silicon photomultipliers electrical model extensive analytical analysis. IEEE Trans. Nuclear Sci. 61(1), 23–34 (2014). https://doi.org/10.1109/TNS.2013.2283231

    Article  ADS  Google Scholar 

  60. S. Seifert, H.T. Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Lohner, D.R. Schaart, Simulation of silicon photomultiplier signals. IEEE Trans. Nuclear Sci. 56(6), 3726–3733 (2009). https://doi.org/10.1109/TNS.2009.2030728

    Article  ADS  Google Scholar 

  61. G. Cho, H. Kim, W.S. Sul, C. Lee, B.-S. Kang, Optimum design of quenching capacitor integrated silicon photomultipliers for tof-pet application. Physics Procedia 37, 1511–1517 (2012) https://doi.org/10.1016/j.phpro.2012.05.327. Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2011)

  62. M.V. Nemallapudi, S. Gundacker, P. Lecoq, E. Auffray, Single photon time resolution of state of the art sipms. J. Instrum. 11(10), 10016 (2016). https://doi.org/10.1088/1748-0221/11/10/P10016

    Article  Google Scholar 

  63. A. Rivetti, CMOS: Front-end Electronics for Radiation Sensors (CRC Press, 2018)

    Book  Google Scholar 

  64. F. Ciciriello, F. Corsi, F. Licciulli, C. Marzocca, G. Matarrese, Time performance of voltage-mode vs current-mode readouts for sipm’s. in 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), (2015). pp. 249–253. https://doi.org/10.1109/IWASI.2015.7184979

  65. P.A.P. Calò, S. Petrignani, M. Di Gioia, C. Marzocca, Analytical study of front-end circuits coupled to silicon photomultipliers for timing performance estimation under the influence of parasitic components. Sensors 20(16), 4428 (2020). https://doi.org/10.3390/s20164428

    Article  ADS  Google Scholar 

  66. S. Hatefi Hesari, M.A. Haque, N. McFarlane, A comprehensive survey of readout strategies for sipms used in nuclear imaging systems. Photonics 8(7), 266 (2021). https://doi.org/10.3390/photonics8070266

    Article  Google Scholar 

  67. F. Acerbi, A. Ferri, A. Gola, N. Zorzi, C. Piemonte, Analysis of single-photon time resolution of fbk silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 787, 34–37 (2015). https://doi.org/10.1016/j.nima.2014.10.057. (New Developments in Photodetection NDIP14)

    Article  ADS  Google Scholar 

  68. F. Acerbi, A.R. Altamura, B. Di Ruzza, S. Merzi, A. Gola, Radiation damage effects of protons and x-rays on silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1047, 167791 (2023). https://doi.org/10.1016/j.nima.2022.167791

    Article  Google Scholar 

  69. T. Tsang, Silicon photomultipliers radiation damage and recovery via high temperature annealing. J. Instrum. 13(10), 10019 (2018). https://doi.org/10.1088/1748-0221/13/10/P10019

    Article  Google Scholar 

  70. A.R. Altamura, F. Acerbi, B. Di Ruzza, E. Verroi, S. Merzi, A. Mazzi, A. Gola, Radiation damage on sipms for space applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1045, 167488 (2023). https://doi.org/10.1016/j.nima.2022.167488

    Article  Google Scholar 

  71. S. Korpar, P. Križan, Solid state single photon sensors for the rich application. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 970, 163804 (2020). https://doi.org/10.1016/j.nima.2020.163804. (A RICH LEGACY)

    Article  Google Scholar 

  72. L. Parellada-Monreal, F. Acerbi, A. Ficorella, A. Franzoi, A. Gola, S. Merzi, A. Nawaz, M. Ruzzarin, G. Paternoster, 3d integration technologies for custom sipm: From bsi to tsv interconnections. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1049, 168042 (2023). https://doi.org/10.1016/j.nima.2023.168042

    Article  Google Scholar 

  73. E. Mikheeva, J.-B. Claude, M. Salomoni, J. Wenger, J. Lumeau, R. Abdeddaim, A. Ficorella, A. Gola, G. Paternoster, M. Paganoni, E. Auffray, P. Lecoq, S. Enoch, CMOS-compatible all-dielectric metalens for improving pixel photodetector arrays. APL Photonics 5(11), 116105 (2020). https://doi.org/10.1063/5.0022162

    Article  ADS  Google Scholar 

  74. E. Garutti, Y. Musienko, Radiation damage of SiPMs. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 926, 69–84 (2019). https://doi.org/10.1016/j.nima.2018.10.191

    Article  ADS  Google Scholar 

  75. M. Calvi, P. Carniti, C. Gotti, C. Matteuzzi, G. Pessina, Single photon detection with SiPMs irradiated up to 1014 cm-2 1-MeV-equivalent neutron fluence. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 922, 243–249 (2019). https://doi.org/10.1016/j.nima.2019.01.013

    Article  ADS  Google Scholar 

  76. R. Preghenella, M. Alexeev, P. Antonioli, C. Baldanza, L. Barion, M. Chiosso, M. Contalbrigo, F. Cossio, S.D. Torre, M.D. Da Rocha Rolo, G. Dellacasa, D. Falchieri, R. Malaguti, M. Mignone, L.P. Rignanese, N. Rubini, S. Vallarino, Study of radiation effects on sipm for an optical readout system for the eic dual-radiator rich. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1056, 168578 (2023). https://doi.org/10.1016/j.nima.2023.168578

    Article  Google Scholar 

  77. N. Karpushkin, D. Finogeev, M. Golubeva, F. Guber, A. Ivashkin, A. Izvestnyy, V. Ladygin, S. Morozov, A. Kugler, V. Mikhaylov, A. Senger, The projectile spectator detector for measuring the geometry of heavy ion collisions at the cbm experiment on fair. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 936, 156–157 (2019). https://doi.org/10.1016/j.nima.2018.10.054. (Frontier Detectors for Frontier Physics: 14th Pisa Meeting on Advanced Detectors)

    Article  ADS  Google Scholar 

  78. T. Aushev, D.Z. Besson, K. Chilikin, R. Chistov, M. Danilov, P. Katrenko, R. Mizuk, G. Pakhlova, P. Pakhlov, V. Rusinov, E. Solovieva, E. Tarkovsky, I. Tikhomirov, T. Uglov, A scintillator based endcap kl and muon detector for the belle ii experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 789, 134–142 (2015). https://doi.org/10.1016/j.nima.2015.03.060

    Article  ADS  Google Scholar 

  79. M. Cordelli, E. Diociaiuti, A. Ferrari, S. Miscetti, S. Müller, G. Pezzullo, I. Sarra, An induced annealing technique for sipms neutron radiation damage. J. Instrum. 16(12), 12012 (2021). https://doi.org/10.1088/1748-0221/16/12/t12012

    Article  Google Scholar 

  80. [GADMC]: "the global argon dark matter collaboration - darkside-20k technical design report". DARKSIDE-CSN2-TDR-2112 (2021)

  81. P. Agnes, I.F.M. Albuquerque, T. Alexander, A.K. Alton, G.R. Araujo, M. Ave, H.O. Back, B. Baldin, G. Batignani, K. Biery, V. Bocci, G. Bonfini, W. Bonivento, B. Bottino, F. Budano, S. Bussino, M. Cadeddu, M. Cadoni, F. Calaprice, A. Caminata, N. Canci, A. Candela, M. Caravati, M. Cariello, M. Carlini, M. Carpinelli, S. Catalanotti, V. Cataudella, P. Cavalcante, S. Cavuoti, A. Chepurnov, C. Cicalò, A.G. Cocco, G. Covone, D. D’Angelo, M. D’Incecco, D. D’Urso, S. Davini, A. De Candia, S. De Cecco, M. De Deo, G. De Filippis, G. De Rosa, M. De Vincenzi, A.V. Derbin, A. Devoto, F. Di Eusanio, G. Di Pietro, C. Dionisi, M. Downing, E. Edkins, A. Empl, A. Fan, G. Fiorillo, R.S. Fitzpatrick, K. Fomenko, D. Franco, F. Gabriele, C. Galbiati, C. Ghiano, S. Giagu, C. Giganti, G.K. Giovanetti, O. Gorchakov, A.M. Goretti, F. Granato, M. Gromov, M. Guan, Y. Guardincerri, M. Gulino, B.R. Hackett, K. Herner, B. Hosseini, D. Hughes, P. Humble, E.V. Hungerford, A. Ianni, V. Ippolito, I. James, T.N. Johnson, K. Keeter, C.L. Kendziora, I. Kochanek, G. Koh, D. Korablev, G. Korga, A. Kubankin, M. Kuss, M. La Commara, M. Lai, X. Li, M. Lissia, G. Longo, Y. Ma, A.A. Machado, I.N. Machulin, A. Mandarano, L. Mapelli, S.M. Mari, J. Maricic, C.J. Martoff, A. Messina, P.D. Meyers, R. Milincic, A. Monte, M. Morrocchi, B.J. Mount, V.N. Muratova, P. Musico, Agasson A. Navrer, A.O. Nozdrina, A. Oleinik, M. Orsini, F. Ortica, L. Pagani, M. Pallavicini, L. Pandola, E. Pantic, E. Paoloni, K. Pelczar, N. Pelliccia, A. Pocar, S. Pordes, S.S. Poudel, D.A. Pugachev, H. Qian, F. Ragusa, M. Razeti, A. Razeto, B. Reinhold, A.L. Renshaw, M. Rescigno, Q. Riffard, A. Romani, B. Rossi, N. Rossi, D. Sablone, O. Samoylov, W. Sands, S. Sanfilippo, C. Savarese, B. Schlitzer, E. Segreto, D.A. Semenov, A. Shchagin, A. Sheshukov, P.N. Singh, M.D. Skorokhvatov, O. Smirnov, A. Sotnikov, C. Stanford, S. Stracka, Y. Suvorov, R. Tartaglia, G. Testera, A. Tonazzo, P. Trinchese, E.V. Unzhakov, M. Verducci, A. Vishneva, B. Vogelaar, M. Wada, T.J. Waldrop, H. Wang, Y. Wang, A.W. Watson, S. Westerdale, M.M. Wojcik, X. **ang, X. **ao, C. Yang, Z. Ye, C. Zhu, G. Zuzel, Darkside-50 532-day dark matter search with low-radioactivity argon. Phys. Rev. D 98, 102006 (2018). https://doi.org/10.1103/PhysRevD.98.102006

    Article  ADS  Google Scholar 

  82. P.-A. Amaudruz, M. Baldwin, M. Batygov, B. Beltran, C.E. Bina, D. Bishop, J. Bonatt, G. Boorman, M.G. Boulay, B. Broerman, T. Bromwich, J.F. Bueno, P.M. Burghardt, A. Butcher, B. Cai, S. Chan, M. Chen, R. Chouinard, B.T. Cleveland, D. Cranshaw, K. Dering, J. DiGioseffo, S. Dittmeier, F.A. Duncan, M. Dunford, A. Erlandson, N. Fatemighomi, S. Florian, A. Flower, R.J. Ford, R. Gagnon, P. Giampa, V.V. Golovko, P. Gorel, R. Gornea, E. Grace, K. Graham, E. Gulyev, R. Hakobyan, A. Hall, A.L. Hallin, M. Hamstra, P.J. Harvey, C. Hearns, C.J. Jillings, O. Kamaev, A. Kemp, M. źniak, S. Langrock, F. La Zia, B. Lehnert, J.J. Lidgard, C. Lim, T. Lindner, Y. Linn, S. Liu, P. Majewski, R. Mathew, A.B. McDonald, T. McElroy, T. McGinn, J.B. McLaughlin, S. Mead, R. Mehdiyev, C. Mielnichuk, J. Monroe, A. Muir, P. Nadeau, C. Nantais, C. Ng, A.J. Noble, E. O’Dwyer, C. Ohlmann, K. Olchanski, K. Olsen, K.S. Ouellet, P. Pasuthip, S.J.M. Peeters, T.R. Pollmann, E.T. Rand, W. Rau, C. Rethmeier, F. Retière, N. Seeburn, B. Shaw, K. Singhrao, P. Skensved, B. Smith, N.J.T. Smith, T. Sonley, J. Soukup, R. Stainforth, C. Stone, V. Strickland, B. Sur, J. Tang, J. Taylor, L. Veloce, E. Vázquez-Jáuregui, J. Walding, M. Ward, S. Westerdale, E. Woolsey, J. Zielinski, First results from the deap-3600 dark matter search with argon at snolab. Phys. Rev. Lett. 121, 071801 (2018). https://doi.org/10.1103/PhysRevLett.121.071801

    Article  ADS  Google Scholar 

  83. F. Acerbi, S. Davini, A. Ferri, C. Galbiati, G. Giovanetti, A. Gola, G. Korga, A. Mandarano, M. Marcante, G. Paternoster, C. Piemonte, A. Razeto, V. Regazzoni, D. Sablone, C. Savarese, G. Zappalá, N. Zorzi, Cryogenic characterization of fbk hd near-uv sensitive sipms. IEEE Trans. Electron Devices 64(2), 521–526 (2017). https://doi.org/10.1109/TED.2016.2641586

    Article  ADS  Google Scholar 

  84. P. Organtini, A. Gola, G. Paternoster, F. Acerbi, G. Margutti, R. Bez, Industrial exploitation of SiPM technology developed for basic research. Nucl. Instrum. Meth. A 978, 164410 (2020). https://doi.org/10.1016/j.nima.2020.164410

    Article  Google Scholar 

  85. L. Consiglio, The cryogenic electronics for dark side-20k sipm readout. J. Instrum. 15(05), 05063 (2020). https://doi.org/10.1088/1748-0221/15/05/C05063

    Article  Google Scholar 

  86. A. Razeto, F. Acerbi, V. Camillo, M. Carlini, L. Consiglio, A. Flammini, C. Galbiati, C. Ghiano, A. Gola, S. Horikawa, P. Kachru, I. Kochanek, K. Kondo, G. Korga, A. Mazzi, A. Moharana, G. Paternoster, D. Sablone, A. Basco, V. Bocci, W. Bonivento, B. Bottino, A. Caminata, S. Copello, F.D. Capua, G.K. Giovanetti, M.L. Commara, P. Musico, E. Paoloni, L.P. Rignanese, S. Sanfilippo, C. Savarese, Y. Suvorov, G. Testera, Very large sipm arrays with aggregated output. J. Instrum. 17(05), 05038 (2022). https://doi.org/10.1088/1748-0221/17/05/P05038

    Article  Google Scholar 

  87. L. Consiglio, V. Camillo, I. Kochanek, G. Korga, A. Razeto, D. Sablone, New developments in the SiPM cryo-electronics for low background dark matter experiments. Nuovo Cim. C 45(5), 141 (2022). https://doi.org/10.1393/ncc/i2022-22141-5

    Article  Google Scholar 

  88. A. Accardi, J.L. Albacete, M. Anselmino, N. Armesto, E.C. Aschenauer, A. Bacchetta, D. Boer, W.K. Brooks, T. Burton, N.-B. Chang, W.-T. Deng, A. Deshpande, M. Diehl, A. Dumitru, R. Dupré, R. Ent, S. Fazio, H. Gao, V. Guzey, H. Hakobyan, Y. Hao, D. Hasch, R. Holt, T. Horn, M. Huang, A. Hutton, C. Hyde, J. Jalilian-Marian, S. Klein, B. Kopeliovich, Y. Kovchegov, K. Kumar, K. Kumerički, M.A.C. Lamont, T. Lappi, J.-H. Lee, Y. Lee, E.M. Levin, F.-L. Lin, V. Litvinenko, T.W. Ludlam, C. Marquet, Z.-E. Meziani, R. McKeown, A. Metz, R. Milner, V.S. Morozov, A.H. Mueller, B. Müller, D. Müller, P. Nadel-Turonski, H. Paukkunen, A. Prokudin, V. Ptitsyn, X. Qian, J.-W. Qiu, M. Ramsey-Musolf, T. Roser, F. Sabatié, R. Sassot, G. Schnell, P. Schweitzer, E. Sichtermann, M. Stratmann, M. Strikman, M. Sullivan, S. Taneja, T. Toll, D. Trbojevic, T. Ullrich, R. Venugopalan, S. Vigdor, W. Vogelsang, C. Weiss, B.-W. **ao, F. Yuan, Y.-H. Zhang, L. Zheng, Electron-ion collider: The next qcd frontier. Eur. Phys. J. A 52(9), 268 (2016). https://doi.org/10.1140/epja/i2016-16268-9

    Article  ADS  Google Scholar 

  89. Khalek R. Abdul, A. Accardi, J. Adam, D. Adamiak, W. Akers, M. Albaladejo, A. Al-bataineh, M.G. Alexeev, F. Ameli, P. Antonioli, N. Armesto, W.R. Armstrong, M. Arratia, J. Arrington, A. Asaturyan, M. Asai, E.C. Aschenauer, S. Aune, H. Avagyan, Gayoso, C. Ayerbe, B. Azmoun, A. Bacchetta, M.D. Baker, F. Barbosa, L. Barion, K.N. Barish, P.C. Barry, M. Battaglieri, A. Bazilevsky, N.K. Behera, F. Benmokhtar, V.V. Berdnikov, J.C. Bernauer, V. Bertone, S. Bhattacharya, C. Bissolotti, D. Boer, M. Boglione, M. Bondì, P. Boora, I. Borsa, F. Bossù, G. Bozzi, J.D. Brandenburg, N. Brei, A. Bressan, W.K. Brooks, S. Bufalino, M.H.S. Bukhari, V. Burkert, N.H. Buttimore, A. Camsonne, A. Celentano, F.G. Celiberto, W. Chang, C. Chatterjee, K. Chen, T. Chetry, T. Chiarusi, Y.-T. Chien, M. Chiosso, X. Chu, E. Chudakov, G. Cicala, E. Cisbani, I.C. Cloet, C. Cocuzza, P.L. Cole, D. Colella, J.L. Collins, M. Constantinou, M. Contalbrigo, G. Contin, R. Corliss, W. Cosyn, A. Courtoy, J. Crafts, R. Cruz-Torres, R.C. Cuevas, U. D’Alesio, Torre, S. Dalla, D. Das, S.S. Dasgupta, C. Da Silva, W. Deconinck, M. Defurne, W. DeGraw, K. Dehmelt, A. Del Dotto, F. Delcarro, A. Deshpande, W. Detmold, R. De Vita, M. Diefenthaler, C. Dilks, D.U. Dixit, S. Dulat, A. Dumitru, R. Dupré, J.M. Durham, M.G. Echevarria, L. El Fassi, D. Elia, R. Ent, R. Esha, J.J. Ethier, O. Evdokimov, K.O. Eyser, C. Fanelli, R. Fatemi, S. Fazio, C. Fernandez-Ramirez, M. Finger, M. Finger, D. Fitzgerald, C. Flore, T. Frederico, I. Friščić, S. Fucini, S. Furletov, Y. Furletova, C. Gal, L. Gamberg, H. Gao, P. Garg, D. Gaskell, K. Gates, Ducati, M.B. Gay, M. Gericke, Da Silveira, G. Gil, F.-X. Girod, D.I. Glazier, K. Gnanvo, V.P. Goncalves, L. Gonella, Hernandez, J.O. Gonzalez, Y. Goto, F. Grancagnolo, L.C. Greiner, W. Guryn, V. Guzey, Y. Hatta, M. Hattawy, F. Hauenstein, X. He, T.K. Hemmick, O. Hen, G. Heyes, D.W. Higinbotham, Blin, A.N. Hiller, T.J. Hobbs, M. Hohlmann, T. Horn, T.-J. Hou, J. Huang, Q. Huang, G.M. Huber, C.E. Hyde, G. Iakovidis, Y. Ilieva, B.V. Jacak, P.M. Jacobs, M. Jadhav, Z. Janoska, A. Jentsch, T. Jezo, X. **g, P.G. Jones, K. Joo, S. Joosten, V. Kafka, N. Kalantarians, G. Kalicy, D. Kang, Z.B. Kang, K. Kauder, S.J.D. Kay, C.E. Keppel, J. Kim, A. Kiselev, M. Klasen, S. Klein, H.T. Klest, O. Korchak, A. Kostina, P. Kotko, Y.V. Kovchegov, M. Krelina, S. Kuleshov, S. Kumano, K.S. Kumar, R. Kumar, L. Kumar, K. Kumerički, A. Kusina, K. Kutak, Y.S. Lai, K. Lalwani, T. Lappi, J. Lauret, M. Lavinsky, D. Lawrence, D. Lednicky, C. Lee, K. Lee, S.H. Lee, S. Levorato, H. Li, S. Li, W. Li, X. Li, X. Li, W.B. Li, T. Ligonzo, H. Liu, M.X. Liu, X. Liu, S. Liuti, N. Liyanage, C. Lorcé, Z. Lu, G. Lucero, N.S. Lukow, E. Lunghi, R. Majka, Y. Makris, I. Mandjavidze, S. Mantry, H. Mäntysaari, F. Marhauser, P. Markowitz, L. Marsicano, A. Mastroserio, V. Mathieu, Y. Mehtar-Tani, W. Melnitchouk, L. Mendez, A. Metz, Z.-E. Meziani, C. Mezrag, M. Mihovilovič, R. Milner, M. Mirazita, H. Mkrtchyan, A. Mkrtchyan, V. Mochalov, V. Moiseev, M.M. Mondal, A. Morreale, D. Morrison, L. Motyka, H. Moutarde, Camacho, C. Muñoz, F. Murgia, M.J. Murray, P. Musico, P. Nadel-Turonski, P.M. Nadolsky, J. Nam, P.R. Newman, D. Neyret, D. Nguyen, E.R. Nocera, F. Noferini, F. Noto, A.S. Nunes, V.A. Okorokov, F. Olness, J.D. Osborn, B.S. Page, S. Park, A. Parker, K. Paschke, B. Pasquini, H. Paukkunen, S. Paul, C. Pecar, I.L.Pegg, C. Pellegrino, C. Peng, L. Pentchev, R. Perrino, F. Petriello, R. Petti, A. Pilloni, C. Pinkenburg, B. Pire, C. Pisano, D. Pitonyak, A.A. Poblaguev, T. Polakovic, M. Posik, M. Potekhin, R. Preghenella, S. Preins, A. Prokudin, P. Pujahari, M.L. Purschke, J.R. Pybus, M. Radici, R. Rajput-Ghoshal, P.E. Reimer, M. Rinaldi, F. Ringer, C.D. Roberts, S. Rodini, J. Rojo, D. Romanov, P. Rossi, E. Santopinto, M. Sarsour, R. Sassot, N. Sato, B. Schenke, W.B. Schmidke, I. Schmidt, A. Schmidt, B. Schmookler, G. Schnell, P. Schweitzer, J. Schwiening, I. Scimemi, S. Scopetta, J. Segovia, R. Seidl, S. Sekula, K. Semenov-Tian-Shanskiy, D.Y. Shao, N. Sherrill, E. Sichtermann, M. Siddikov, A. Signori, B.K. Singh, S. Širca, K. Slifer, W. Slominski, D. Sokhan, W.E. Sondheim, Y. Song, O. Soto, H. Spiesberger, A.M. Stasto, P. Stepanov, G. Sterman, J.R. Stevens, I.W. Stewart, I. Strakovsky, M. Strikman, M. Sturm, M.L. Stutzman, M. Sullivan, B. Surrow, P. Svihra, S. Syritsyn, A. Szczepaniak, P. Sznajder, H. Szumila-Vance, L. Szymanowski, A.S. Tadepalli, Takaki, J.D. Tapia, G.F. Tassielli, J. Terry, F. Tessarotto, K. Tezgin, L. Tomasek, Acosta, F. Torales, P. Tribedy, A. Tricoli, Tripathi, S. Triloki, R.L. Trotta, O.D. Tsai, Z. Tu, C. Tuvè, T. Ullrich, M. Ungaro, G.M. Urciuoli, A. Valentini, P. Vancura, M. Vandenbroucke, C. Van Hulse, G. Varner, R. Venugopalan, I. Vitev, A. Vladimirov, G. Volpe, A. Vossen, E. Voutier, J. Wagner, S. Wallon, H. Wang, Q. Wang, X. Wang, S.Y. Wei, C. Weiss, T. Wenaus, H. Wennlöf, N. Wickramaarachchi, A. Wikramanayake, D. Winney, C.P. Wong, C. Woody, L. **a, B.W. **ao, J. **e, H. **ng, Q.H. Xu, J. Zhang, S. Zhang, Z. Zhang, Z.W. Zhao, Y.X. Zhao, L. Zheng, Y. Zhou, P. Zurita, Science requirements and detector concepts for the electron-ion collider: Eic yellow report. Nucl. Phys. A 1026, 122447 (2022) https://doi.org/10.1016/j.nuclphysa.2022.122447

  90. T. Ullrich, Requirements and R &D for detectors at the future Electron-Ion Collider. Nucl. Instrum. Meth. A 1039, 167041 (2022). https://doi.org/10.1016/j.nima.2022.167041

    Article  Google Scholar 

  91. A. Del Dotto, C.-P. Wong, L. Allison, M. Awadi, B. Azmoun, F. Barbosa, W. Brooks, T. Cao, M. Chiu, E. Cisbani, M. Contalbrigo, A. Datta, M. Demarteau, J.M. Durham, R. Dzhygadlo, D. Fields, Y. Furletova, C. Gleason, M. Grosse-Perdekamp, J. Harris, X. He, H. van Hecke, T. Horn, J. Huang, C. Hyde, Y. Ilieva, G. Kalicy, M. Kimball, E. Kistenev, Y. Kulinich, M. Liu, R. Majka, J. McKisson, R. Mendez, P. Nadel-Turonski, K. Park, K. Peters, T. Rao, R. Pisani, Y. Qiang, S. Rescia, P. Rossi, M. Sarsour, C. Schwarz, J. Schwiening, C.L. da Silva, N. Smirnov, H. Stein, J. Stevens, A. Sukhanov, S. Syed, A. Tate, J. Toh, C. Towell, R. Towell, T. Tsang, R. Wagner, J. Wang, C. Woody, W. **, J. **e, Z.W. Zhao, B. Zihlmann, C. Zorn, Design and r &d of rich detectors for eic experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 876, 237–240 (2017). https://doi.org/10.1016/j.nima.2017.03.032. (The 9th international workshop on Ring Imaging Cherenkov Detectors (RICH2016))

    Article  ADS  Google Scholar 

  92. I. Balossino, L. Barion, M. Contalbrigo, P. Lenisa, V. Lucherini, R. Malaguti, M. Mirazita, A. Movsisyan, S. Squerzanti, M. Turisini, Cherenkov light imaging tests with state-of-the-art solid state photon counter for the CLAS12 RICH detector. Nucl. Instrum. Meth. A 876, 89–92 (2017). https://doi.org/10.1016/j.nima.2017.01.074

    Article  ADS  Google Scholar 

  93. E. Cisbani, A.D. Dotto, C. Fanelli, M. Williams, M. Alfred, F. Barbosa, L. Barion, V. Berdnikov, W. Brooks, T. Cao, M. Contalbrigo, S. Danagoulian, A. Datta, M. Demarteau, A. Denisov, M. Diefenthaler, A. Durum, D. Fields, Y. Furletova, C. Gleason, M. Grosse-Perdekamp, M. Hattawy, X. He, H. Hecke, D. Higinbotham, T. Horn, C. Hyde, Y. Ilieva, G. Kalicy, A. Kebede, B. Kim, M. Liu, J. McKisson, R. Mendez, P. Nadel-Turonski, I. Pegg, D. Romanov, M. Sarsour, C.L. Silva, J. Stevens, X. Sun, S. Syed, R. Towell, J. **e, Z.W. Zhao, B. Zihlmann, C. Zorn, Ai-optimized detector design for the future electron-ion collider: the dual-radiator rich case. J. Instrum 15(05), 05009 (2020). https://doi.org/10.1088/1748-0221/15/05/P05009

    Article  Google Scholar 

  94. J. Adam, L. Adamczyk, N. Agrawal, C. Aidala, W. Akers, M. Alekseev, M.M. Allen, F. Ameli, A. Angerami, P. Antonioli, N.J. Apadula, A. Aprahamian, W. Armstrong, M. Arratia, J.R. Arrington, A. Asaturyan, E.C. Aschenauer, K. Augsten, S. Aune, K. Bailey, C. Baldanza, M. Bansal, F. Barbosa, L. Barion, K. Barish, M. Battaglieri, A. Bazilevsky, N.K. Behera, V. Berdnikov, J. Bernauer, C. Berriaud, A. Bhasin, D.S. Bhattacharya, J. Bielcik, J. Bielcikova, C. Bissolotti, W. Boeglin, M. Bondì, M. Borri, F. Bossù, F. Bouyjou, J.D. Brandenburg, A. Bressan, M. Brooks, S.L. Bültmann, D. Byer, H. Caines, M.C. Barca Sanchez, V. Calvelli, A. Camsonne, L. Cappelli, M. Capua, M. Castro, D. Cavazza, D. Cebra, A. Celentano, I. Chakaberia, B. Chan, W. Chang, M. Chartier, C. Chatterjee, D. Chen, J. Chen, K. Chen, Z. Chen, H. Chetri, T. Chiarusi, M. Chiosso, X. Chu, J.J. Chwastowski, G. Cicala, E. Cisbani, E. Cline, I. Cloët, D. Colella, M. Contalbrigo, G. Contin, R. Corliss, Y. Corrales-Morales, J. Crafts, C. Crawford, R. Cruz-Torres, D. D’Ago, A. D’Angelo, N. D’Hose, J. Dainton, S.D. Torre, S.S. Dasgupta, S. Dash, N. Dashyan, J. Datta, M. Daugherity, R.D. Vita, W. Deconinck, M. Defurne, K. Dehmelt, A.D. Dotto, F. Delcarro, G. Dellacasa, Z.S. Demiroglu, G.W. Deptuch, V. Desai, A. Deshpande, K. Devereaux, R. Dhillon, R.D. Salvo, C. Dilks, D. Dixit, S. Dobbs, X. Dong, J. Drachenberg, A. Drees, R. Dupré, M. Durham, R. Dzhygadlo, L.E. Fassi, D. Elia, E. Epple, R. Esha, O. Evdokimov, O. Eyser, D. Falchieri, W. Fan, A. Fantini, R. Fatemi, S. Fazio, S. Fegan, A. Filippi, H. Fox, A. Francisco, A. Freeze, S. Furletov, Y. Furletova, C. Gal, S. Gardner, P. Garg, D. Gaskell, K. Gates, M.T.W. Gericke, F. Geurts, C. Ghosh, M. Giacalone, F. Giacomini, S. Gilchrist, D. Glazier, K. Gnanvo, L. Gonella, L.C. Greiner, N. Guerrini, L. Guo, A. Gupta, R. Gupta, W. Guryn, X. He, T. Hemmick, S. Heppelmann, D. Higinbotham, M. Hoballah, A. Hoghmrtsyan, M. Hohlmann, T. Horn, D. Hornidge, H.Z. Huang, C.E. Hyde, P. Iapozzuto, M. Idzik, B.V. Jacak, M. Jadhav, S. Jain, C. Jena, A. Jentsch, Y. Ji, Z. Ji, J. Jia, P.G. Jones, R.W.I. Jones, S. Joosten, S. Joshi, L. Kabir, G. Kalicy, G. Karyan, V.K.S. Kashyap, D. Kawall, H. Ke, M. Kelsey, J. Kim, J. Kiryluk, A. Kiselev, S.R. Klein, H. Klest, V. Kochar, W. Korsch, L. Kosarzewski, A. Kotzinian, F. Krizek, A. Kumar, K.S. Kumar, L. Kumar, R. Kumar, S. Kumar, A. Kunnath, N. Kushawaha, R. Lacey, Y.S. Lai, K. Lalwani, J. Landgraf, L. Lanza, D. Lattuada, M. Lavinsky, J.H. Lee, S.H. Lee, R. Lemmon, A. Lestone, N. Lewis, H. Li, S. Li, W. Li, W. Li, X. Li, X. Li, X. Liang, T. Ligonzo, T. Lin, J. Liu, K. Liu, M. Liu, K. Livingston, N. Liyanage, T. Ljubicic, O. Long, N. Lukow, Y. Ma, J. Mammei, F. Mammoliti, K. Mamo, I. Mandjavidze, S. Maple, D. Marchand, A. Margotti, C. Markert, P. Markowitz, T. Marshall, A. Martin, H. Marukyan, A. Mastroserio, S. Mathew, S. Mayilyan, C. Mayri, M. McEneaney, Y. Mei, L. Meng, F. Méot, J. Metcalfe, Z.-E. Meziani, P. Mihir, R. Milton, A. Mirabella, M. Mirazita, A. Mkrtchyan, H. Mkrtchyan, B. Mohanty, M. Mondal, A. Morreale, A. Movsisyan, D. Muenstermann, A. Mukherjee, C.M. Camacho, M.J. Murray, H. Mustafa, M. Myška, B.P. Nachman, K. Nagai, R. Naik, J.P. Naim, J. Nam, B. Nandi, E. Nappi, M. Nasim, D. Neff, D. Neiret, P.R. Newman, M. Nguyen, S. Niccolai, M. Nie, F. Noferini, J. Norman, F. Noto, A.S. Nunes, T. O’Connor, G. Odyniec, V.A. Okorokov, M. Osipenko, B. Page, C. Palatchi, D. Palmer, P. Palni, S. Pandey, D. Panzieri, S. Park, K. Paschke, C. Pastore, R.N. Patra, A. Paul, S. Paul, C. Pecar, A. Peck, I. Pegg, C. Pellegrino, C. Peng, L. Pentchev, R. Perrino, K. Piotrzkowski, T. Polakovic, M. Płoskoń, M. Posik, S. Prasad, R. Preghenella, S. Priens, E. Prifti, M. Przybycien, P. Pujahari, A. Quintero, M. Radici, S.K. Radhakrishnan, S. Rahman, S. Rathi, B. Raue, R. Reed, P. Reimer, J. Reinhold, E. Renner, L. Rignanese, M. Ripani, A. Rizzo, D. Romanov, A. Roy, N. Rubini, M. Ruspa, L. Ruan, F. Sabatié, S. Sadhukhan, N. Sahoo, P. Sahu, D. Samuel, A. Sarkar, M. Sarsour, W. Schmidke, B. Schmookler, C. Schwarz, J. Schwiening, M. Scott, I. Sedgwick, M. Segreti, S. Sekula, R. Seto, N. Shah, A. Shahinyan, D. Sharma, N. Sharma, E.P. Sichtermann, A. Signori, A. Singh, B.K. Singh, S.N. Singh, N. Smirnov, D. Sokhan, R. Soltz, W. Sondheim, S. Spinali, F. Stacchi, R. Staszewski, P. Stepanov, S. Strazzi, I.R. Stroe, X. Sun, B. Surrow, Z. Sweger, T.J. Symons, V. Tadevosyan, A. Tang, E. Tassi, L. Teodorescu, F. Tessarotto, D. Thomas, J.H. Thomas, T. Toll, L. Tomášek, F. Torales-Acosta, P. Tribedy, Tripathi V. Triloki, R. Trotta, M. Trzebiński, B.A. Trzeciak, O. Tsai, Z. Tu, R. Turrisi, C. Tuvè, T. Ullrich, G.M. Urciuoli, A. Valentini, S. Vallarino, M. Vandenbroucke, J. Vanek, G. Vino, G. Volpe, H. Voskanyan, A. Vossen, E. Voutier, G. Wang, Y. Wang, D. Watts, N. Wickramaarachchi, F. Wilson, C.-P. Wong, X. Wu, Y. Wu, J. ** in cryogenic dark matter detectors. JINST 15(05), 05019 (2020). https://doi.org/10.1088/1748-0221/15/05/C05019

    Article  Google Scholar 

  95. S. Vallarino, M. Alexeev, P. Antonioli, L. Barion, M. Castro, M. Cavallina, M. Chiosso, E. Cisbani, M. Contalbrigo, A.G.T. Ramos, D. Lattuada, F. Mammoliti, R. Malaguti, M. Mirazita, F. Noto, R. Preghenella, L.P. Rignanese, N. Rubini, M. Ruspa, C. Tuvé, G. Volpe, Prototype of a dual-radiator RICH detector for the electron–ion collider. Nucl. Instrum. Methods Phys. Res. A 1058, 168834 (2024). https://doi.org/10.1016/j.nima.2023.168834

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contributions of our colleague Nicola Rubini, who provided valuable assistance in generating several plots for Sects. 3 and 4. Special thanks are also due to Rosario Nania who provided insightful comments and constructive feedback that greatly contributed to enhancing the quality of the paper. We also extend our appreciation to the referee for its thorough and meticulous review of the manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Pio Rignanese.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rignanese, L.P., Antonioli, P., Roberto, P. et al. SiPMs and examples of applications for low light detection in particle and astroparticle physics. Riv. Nuovo Cim. (2024). https://doi.org/10.1007/s40766-024-00056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40766-024-00056-x

Keywords

Navigation