Log in

Evaluation and Treatment of Disorders of Phosphate Balance

  • Pediatric Nephrology (BP Dixon and E Nehus, Section Editors)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of review

The purpose of this article is to review (1) the molecular mechanisms and hormonal factors involved in phosphate handling and regulation, (2) how to appropriately interpret serum and urine phosphate measurements in pediatric patients, (3) the pathophysiology of hypophosphatemic and hyperphosphatemic conditions, and (4) current strategies for treatment of hypophosphatemia and hyperphosphatemia in pediatric patients.

Recent findings

For decades, treatment of some hypophosphatemic conditions like X-linked hypophosphatemic rickets (XLH), characterized by a primary increase in fibroblast growth factor 23 (FGF23) activity, consisted of non-specific therapy with phosphate supplementation and calcitriol administration. However, in the past few years, burosumab, a targeted anti-FGF23 antibody, has been developed, representing a promising new medication for the treatment of pediatric XLH patients. The treatment of hyperphosphatemic conditions like chronic kidney disease (CKD) consists of dietary phosphate restriction and enteral phosphate binders; however, the development of new binders and inhibitors of cellular phosphate transporters may offer additional treatment options in the future.

Summary

The evaluation and treatment of disorders of phosphate balance in children is complex, as numerous interrelated mechanisms and hormones are involved in phosphate handling and regulation. Knowledge of the pathophysiology of hypophosphatemic and hyperphosphatemic conditions informs optimal diagnostic and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Ruppe MD. Jan de Beur SM. Disorders of phosphate homeostasis. In: Bilezikian JP, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 9th ed. American Society for Bone and Mineral Research: Hoboken, NJ; 2019. p. 674–83.

    Google Scholar 

  2. Goretti Penido M, Alon US. Phosphate homeostasis and its role in bone health. Pediatr Nephrol. 2012;27(11):2039–48. https://doi.org/10.1007/s00467-012-2175-z.

    Article  PubMed  Google Scholar 

  3. Bacchetta J, Salusky IB. Evaluation of hypophosphatemia: lessons from patients with genetic disorders. Am J Kidney Dis. 2012;59(1):152–9. https://doi.org/10.1053/j.ajkd.2011.08.035.

    Article  CAS  PubMed  Google Scholar 

  4. K/DOQI clinical practice guidelines for nutrition in children with chronic kidney disease. Am J Kidney Dis. 2009;53:S1–123.

  5. • Hernando N, Wagner CA. Mechanisms and regulation of intestinal phosphate absorption. Compr Physiol. 2018;8(3):1065–90. https://doi.org/10.1002/cphy.c170024. This review provides a comprehensive summary of the mechanisms underlying phosphate transport and regulation.

    Article  PubMed  Google Scholar 

  6. Gattineni J, Baum M. Genetic disorders of phosphate regulation. Pediatr Nephrol. 2012;27(9):1477–87. https://doi.org/10.1007/s00467-012-2103-2.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hernando N, Gagnon KB, Lederer ED. Phosphate transport in epithelial and nonepithelial tissue. Physiol Rev. 2020. https://doi.org/10.1152/physrev.00008.2019.

  8. Jubiz W, Canterbury JM, Reiss E, Tyler FH. Circadian rhythm in serum parathyroid hormone concentration in human subjects: correlation with serum calcium, phosphate, albumin, and growth hormone levels. J Clin Invest. 1972;51(8):2040–6. https://doi.org/10.1172/jci107010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Portale AA, Halloran BP, Morris RC Jr. Dietary intake of phosphorus modulates the circadian rhythm in serum concentration of phosphorus. Implications for the renal production of 1,25-dihydroxyvitamin D. J Clin Invest. 1987;80(4):1147–54. https://doi.org/10.1172/jci113172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Isakova T, **e H, Barchi-Chung A, Smith K, Sowden N, Epstein M, et al. Daily variability in mineral metabolites in CKD and effects of dietary calcium and calcitriol. Clin J Am Soc Nephrol. 2012;7(5):820–8. https://doi.org/10.2215/cjn.11721111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Becker GJ, Walker RG, Hewitson TD, Pedagogos E. Phosphate levels--time for a rethink? Nephrol Dial Transplant. 2009;24(8):2321–4. https://doi.org/10.1093/ndt/gfp220.

    Article  PubMed  Google Scholar 

  12. Lippi G, Salvagno GL, Montagnana M, Brocco G, Guidi GC. Influence of hemolysis on routine clinical chemistry testing. Clin Chem Lab Med. 2006;44(3):311–6. https://doi.org/10.1515/cclm.2006.054.

    Article  CAS  PubMed  Google Scholar 

  13. Perović A, Dolčić M. Influence of hemolysis on clinical chemistry parameters determined with Beckman Coulter tests - detection of clinically significant interference. Scand J Clin Lab Invest. 2019;79(3):154–9. https://doi.org/10.1080/00365513.2019.1576099.

    Article  CAS  PubMed  Google Scholar 

  14. Ball CL, Tobler K, Ross BC, Connors MR, Lyon ME. Spurious hyperphosphatemia due to sample contamination with heparinized saline from an indwelling catheter. Clin Chem Lab Med. 2004;42(1):107–8. https://doi.org/10.1515/cclm.2004.021.

    Article  CAS  PubMed  Google Scholar 

  15. Cachat F, Bardy D, Durussel C, Di Paolo E. Spurious hyperphosphatemia in a patient with alteplase-locked central venous catheter. Pediatr Nephrol. 2006;21(2):301–2. https://doi.org/10.1007/s00467-005-2088-1.

    Article  PubMed  Google Scholar 

  16. Schiller B, Virk B, Blair M, Wong A, Moran J. Spurious hyperphosphatemia in patients on hemodialysis with catheters. Am J Kidney Dis. 2008;52(3):617–20. https://doi.org/10.1053/j.ajkd.2008.03.033.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Isakova T, Gutierrez O, Shah A, Castaldo L, Holmes J, Lee H, et al. Postprandial mineral metabolism and secondary hyperparathyroidism in early CKD. J Am Soc Nephrol. 2008;19(3):615–23. https://doi.org/10.1681/asn.2007060673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Slatopolsky E, Bricker NS. The role of phosphorus restriction in the prevention of secondary hyperparathyroidism in chronic renal disease. Kidney Int. 1973;4(2):141–5. https://doi.org/10.1038/ki.1973.92.

    Article  CAS  PubMed  Google Scholar 

  19. Payne RB. Renal tubular reabsorption of phosphate (TmP/GFR): indications and interpretation. Ann Clin Biochem. 1998;35(Pt 2):201–6. https://doi.org/10.1177/000456329803500203.

    Article  CAS  PubMed  Google Scholar 

  20. Diab L, Krebs NF. Vitamin excess and deficiency. Pediatr Rev. 2018;39(4):161–79. https://doi.org/10.1542/pir.2016-0068.

    Article  PubMed  Google Scholar 

  21. Malloy PJ, Feldman D. Genetic disorders and defects in vitamin d action. Endocrinol Metab Clin North Am. 2010;39(2):333–46, table of contents. https://doi.org/10.1016/j.ecl.2010.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liamis G, Milionis HJ, Elisaf M. Medication-induced hypophosphatemia: a review. Qjm. 2010;103(7):449–59. https://doi.org/10.1093/qjmed/hcq039.

    Article  CAS  PubMed  Google Scholar 

  23. Foreman JW. Fanconi syndrome. Pediatr Clin N Am. 2019;66(1):159–67. https://doi.org/10.1016/j.pcl.2018.09.002.

    Article  Google Scholar 

  24. Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch. 2019;471(1):149–63. https://doi.org/10.1007/s00424-018-2184-2.

    Article  CAS  PubMed  Google Scholar 

  25. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26(3):345–8. https://doi.org/10.1038/81664.

  26. Boyce AM, Collins MT. Fibrous dysplasia/McCune-Albright syndrome: a rare, mosaic disease of Gα s activation. Endocr Rev. 2020;41(2):345–70. https://doi.org/10.1210/endrev/bnz011.

    Article  Google Scholar 

  27. Wolf M, Chertow GM, Macdougall IC, Kaper R, Krop J, Strauss W. Randomized trial of intravenous iron-induced hypophosphatemia. JCI Insight. 2018;3(23). https://doi.org/10.1172/jci.insight.124486.

  28. Schouten BJ, Hunt PJ, Livesey JH, Frampton CM, Soule SG. FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J Clin Endocrinol Metab. 2009;94(7):2332–7. https://doi.org/10.1210/jc.2008-2396.

    Article  CAS  PubMed  Google Scholar 

  29. Yamamoto S, Okada Y, Mori H, Fukumoto S, Tanaka Y. Fibroblast growth factor 23-related osteomalacia caused by the prolonged administration of saccharated ferric oxide. Intern Med. 2012;51(17):2375–8. https://doi.org/10.2169/internalmedicine.51.7450.

    Article  PubMed  Google Scholar 

  30. Zoller H, Schaefer B, Glodny B. Iron-induced hypophosphatemia: an emerging complication. Curr Opin Nephrol Hypertens. 2017;26(4):266–75. https://doi.org/10.1097/mnh.0000000000000329.

    Article  CAS  PubMed  Google Scholar 

  31. Marinella MA. Refeeding syndrome and hypophosphatemia. J Intensive Care Med. 2005;20(3):155–9. https://doi.org/10.1177/0885066605275326.

    Article  PubMed  Google Scholar 

  32. Jain N, Reilly RF. Hungry bone syndrome. Curr Opin Nephrol Hypertens. 2017;26(4):250–5. https://doi.org/10.1097/mnh.0000000000000327.

    Article  PubMed  Google Scholar 

  33. • Schindeler A, Biggin A, Munns CF. Clinical evidence for the benefits of Burosumab therapy for X-linked hypophosphatemia (XLH) and other conditions in adults and children. Front Endocrinol (Lausanne). 2020;11:338. https://doi.org/10.3389/fendo.2020.00338. This review summarizes the clinical trial data to date regarding burosumab treatment in adults and children with XLH.

    Article  Google Scholar 

  34. • Imel EA, Glorieux FH, Whyte MP, Munns CF, Ward LM, Nilsson O, et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet. 2019;393(10189):2416–27. https://doi.org/10.1016/s0140-6736(19)30654-3. This study is a randomized, active-controlled, open-label, phase 3 trial of burosumab vs. conventional therapy (oral phosphate and calcitriol) in 61 children with XLH aged 1-12 years, with a primary endpoint of change in rickets severity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabel D, et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol. 2019;15(7):435–55. https://doi.org/10.1038/s41581-019-0152-5.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ladenhauf HN, Stundner O, Spreitzhofer F, Deluggi S. Severe hyperphosphatemia after administration of sodium-phosphate containing laxatives in children: case series and systematic review of literature. Pediatr Surg Int. 2012;28(8):805–14. https://doi.org/10.1007/s00383-012-3124-4.

    Article  PubMed  Google Scholar 

  37. Becknell B, Smoyer WE, O'Brien NF. Hemodialysis for near-fatal sodium phosphate toxicity in a child receiving sodium phosphate enemas. Pediatr Emerg Care. 2014;30(11):814–7. https://doi.org/10.1097/pec.0000000000000267.

    Article  PubMed  Google Scholar 

  38. McNamara S, Galt DJ. Regarding near-fatal sodium phosphate toxicity in a child receiving sodium phosphate enemas. Pediatr Emerg Care. 2015;31(8):e7. https://doi.org/10.1097/pec.0000000000000523.

    Article  PubMed  Google Scholar 

  39. Farrow EG, Imel EA, White KE. Miscellaneous non-inflammatory musculoskeletal conditions. Hyperphosphatemic familial tumoral calcinosis (FGF23, GALNT3 and αKlotho). Best Pract Res Clin Rheumatol. 2011;25(5):735–47. https://doi.org/10.1016/j.berh.2011.10.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boyce AM, Lee AE, Roszko KL, Gafni RI. Hyperphosphatemic tumoral calcinosis: pathogenesis, clinical presentation, and challenges in management. Front Endocrinol (Lausanne). 2020;11:293. https://doi.org/10.3389/fendo.2020.00293.

    Article  Google Scholar 

  41. Cheung WL, Hon KL, Fung CM, Leung AK. Tumor lysis syndrome in childhood malignancies. Drugs Context. 2020;9:1–14. https://doi.org/10.7573/dic.2019-8-2.

    Article  Google Scholar 

  42. Hanudel MR, Moe SM, Salusky IB. Pathophysiology and treatment of chronic kidney disease–mineral and bone disorder. In: Bilezikian JP, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 9th ed. Hoboken, NJ: American Society for Bone and Mineral Research; 2019. p. 695–704.

    Google Scholar 

  43. Nakanishi T, Hasuike Y, Nanami M, Yahiro M, Kuragano T. Novel iron-containing phosphate binders and anemia treatment in CKD: oral iron intake revisited. Nephrol Dial Transplant. 2016;31(10):1588–94. https://doi.org/10.1093/ndt/gfv268.

    Article  CAS  PubMed  Google Scholar 

  44. Hanudel MR, Laster M, Ramos G, Gales B, Salusky IB. Clinical experience with the use of ferric citrate as a phosphate binder in pediatric dialysis patients. Pediatr Nephrol. 2018;33(11):2137–42. https://doi.org/10.1007/s00467-018-3999-y.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fouque D, Vervloet M, Ketteler M. Targeting gastrointestinal transport proteins to control hyperphosphatemia in chronic kidney disease. Drugs. 2018;78(12):1171–86. https://doi.org/10.1007/s40265-018-0950-2.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Thomas L, Xue J, Murali SK, Fenton RA, Dominguez Rieg JA, Rieg T. Pharmacological Npt2a inhibition causes phosphaturia and reduces plasma phosphate in mice with normal and reduced kidney function. J Am Soc Nephrol. 2019;30(11):2128–39. https://doi.org/10.1681/asn.2018121250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Hanudel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Nephrology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanudel, M.R. Evaluation and Treatment of Disorders of Phosphate Balance. Curr Treat Options Peds 6, 227–240 (2020). https://doi.org/10.1007/s40746-020-00208-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-020-00208-1

Keywords

Navigation