Log in

Comparison and Identification of Optimal Machine Learning Model for Rapid Optimization of Printed Line Characteristics of Aerosol Jet Printing Technology

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Among the various direct-write (DW) techniques, aerosol jet printing (AJP) has the advantages of high resolution (~ 10 μm) and flexible working distance (2-5 mm). On this basis, it has emerged as a promising DW technology to precisely customize complex electrical functional devices. However, the micro-electronic devices fabricated using AJP suffer from low electrical performance because of inferior printed line geometric characteristics. Specifically, high edge roughness lines are detrimental to the uniformity of the formed electrical functional devices. In addition, the low controllability of the printed line width may induce overlap of narrowly spaced circuits or unnecessary intertrack voids, which will hinder the wide application of AJP technology in advanced electronic manufacturing industry. Therefore, ensuring high precision of the line width and low edge roughness is of primary importance for AJP technology. In this research, a machine learning framework is proposed for rapid optimization of printed line characteristics. In the proposed framework, SHGFR and CGFR were considered as input variables, and line width and line roughness were taken as the target responses. Three representative machine learning algorithms, tree-based random forest regression, kernel-based support vector machine, and Bayesian-based Gaussian process regression, were then adopted for model development. Subsequently, the identified optimal machine learning model was integrated with a NSGA-III for rapid optimization of printed line characteristics, and experiments validated the effectiveness of the adopted approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data is made available on request.

References

  1. Cummins, G., & Desmulliez, M. P. Y. (2012). Inkjet printing of conductive materials: A review. Circuit World, 38(4), 193–213. https://doi.org/10.1108/03056121211280413

    Article  Google Scholar 

  2. Khan, S., Lorenzelli, L., & Dahiya, R. S. (2015). Technologies for printing sensors and electronics over large flexible substrates: A review. IEEE Sensors Journal, 15(6), 3164–3185. https://doi.org/10.1109/JSEN.2014.2375203

    Article  Google Scholar 

  3. Li, Q., Zhang, J., Li, Q., Li, G., Tian, X., Luo, Z., Qiao, F., Wu, X., & Zhang, J. (2019). Review of printed electrodes for flexible devices. Frontiers in Materials. https://doi.org/10.3389/fmats.2018.00077

    Article  Google Scholar 

  4. Gupta, A. A., Bolduc, A., Cloutier, S. G., Izquierdo, R. (2016). Aerosol jet printing for printed electronics rapid prototy**. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 866–869). https://doi.org/10.1109/ISCAS.2016.7527378

  5. Wilkinson, N. J., Smith, M. A. A., Kay, R. W., & Harris, R. A. (2019). A review of aerosol jet printing—A non-traditional hybrid process for micro-manufacturing. The International Journal of Advanced Manufacturing Technology, 105(11), 4599–4619. https://doi.org/10.1007/s00170-019-03438-2

    Article  Google Scholar 

  6. Park, S.-I., Quan, Y.-J., Kim, S.-H., Kim, H., Kim, S., Chun, D.-M., Lee, C. S., Taya, M., Chu, W.-S., & Ahn, S.-H. (2016). A review on fabrication processes for electrochromic devices. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 397–421. https://doi.org/10.1007/s40684-016-0049-8

    Article  Google Scholar 

  7. Kim, S., Kim, D. H., Kim, W., Cho, Y. T., & Fang, N. X. (2021). Additive manufacturing of functional microarchitected reactors for energy, environmental, and biological applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(1), 303–326. https://doi.org/10.1007/s40684-020-00277-5

    Article  Google Scholar 

  8. Song, J.-H., Jung, W.-K., & Ahn, S.-H. (2023). Improved energy efficiency of laser-enhanced nanoparticle deposition system analyzed with a smart power monitoring device. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-022-00494-0

    Article  Google Scholar 

  9. Tan, H. W., Tran, T., & Chua, C. K. (2016). A review of printed passive electronic components through fully additive manufacturing methods. Virtual and Physical Prototy**, 11(4), 271–288. https://doi.org/10.1080/17452759.2016.1217586

    Article  Google Scholar 

  10. Cantù, E., Tonello, S., Abate, G., Uberti, D., Sardini, E., & Serpelloni, M. (2018). Aerosol jet printed 3D electrochemical sensors for protein detection. Sensors, 18(11), 3719. https://doi.org/10.3390/s18113719

    Article  Google Scholar 

  11. Clifford, B., Beynon, D., Phillips, C., & Deganello, D. (2018). Printed-sensor-on-chip devices—Aerosol jet deposition of thin film relative humidity sensors onto packaged integrated circuits. Sensors and Actuators B: Chemical, 255, 1031–1038. https://doi.org/10.1016/j.snb.2017.08.086

    Article  Google Scholar 

  12. Christenson, K. K., Jason A. P., Michael, J. R., McDonald, K., & Justin, B. (2011). “Direct printing of circuit boards using Aerosol Jet®”. In NIP & digital fabrication conference (vol. 27, pp. 433–436). Society of Imaging Science and Technology

  13. Ha, M., Seo, J.-W.T., Prabhumirashi, P. L., Zhang, W., Geier, M. L., Renn, M. J., Kim, C. H., Hersam, M. C., & Frisbie, C. D. (2013). Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays. Nano Letters, 13(3), 954–960. https://doi.org/10.1021/nl3038773

    Article  Google Scholar 

  14. Serpelloni, M., Cantù, E., Borghetti, M., & Sardini, E. (2020). Printed smart devices on cellulose-based materials by means of aerosol-jet printing and photonic curing. Sensors, 20(3), 841. https://doi.org/10.3390/s20030841

    Article  Google Scholar 

  15. Wei, H., Cauchy, X., Navas, I. O., Abderrafai, Y., Chizari, K., Sundararaj, U., Liu, Y., Leng, J., & Therriault, D. (2019). Direct 3D printing of hybrid nanofiber-based nanocomposites for highly conductive and shape memory applications. ACS Applied Materials & Interfaces, 11(27), 24523–24532. https://doi.org/10.1021/acsami.9b04245

    Article  Google Scholar 

  16. Smith, M., Choi, Y. S., Boughey, C., & Kar-Narayan, S. (2017). Controlling and assessing the quality of aerosol jet printed features for large area and flexible electronics. Flexible and Printed Electronics, 2(1), 015004. https://doi.org/10.1088/2058-8585/aa5af9

    Article  Google Scholar 

  17. Salary, R., Lombardi, J. P., Samie Tootooni, M., Donovan, R., Rao, P. K., Borgesen, P., & Poliks, M. D. (2017). Computational fluid dynamics modeling and online monitoring of aerosol jet printing process. Journal of Manufacturing Science and Engineering, 139(2), 021015. https://doi.org/10.1115/1.4034591

    Article  Google Scholar 

  18. Mahajan, A., Frisbie, C. D., & Francis, L. F. (2013). Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines. ACS Applied Materials & Interfaces, 5(11), 4856–4864. https://doi.org/10.1021/am400606y

    Article  Google Scholar 

  19. Zhao, D., Liu, T., Zhang, M., Liang, R., & Wang, B. (2012). Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures. Smart Materials and Structures, 21(11), 115008. https://doi.org/10.1088/0964-1726/21/11/115008

    Article  Google Scholar 

  20. Zhang, H., Moon, S. K., & Ngo, T. H. (2020). 3D printed electronics of non-contact ink writing techniques: status and promise. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(2), 511–524. https://doi.org/10.1007/s40684-019-00139-9

    Article  Google Scholar 

  21. Seifert, T., Sowade, E., Roscher, F., Wiemer, M., Gessner, T., & Baumann, R. R. (2015). Additive manufacturing technologies compared: morphology of deposits of silver ink using inkjet and aerosol jet printing. Industrial & Engineering Chemistry Research, 54(2), 769–779. https://doi.org/10.1021/ie503636c

    Article  Google Scholar 

  22. Zhang, H., & Moon, S. K. (2021). Reviews on machine learning approaches for process optimization in noncontact direct ink writing. ACS Applied Materials & Interfaces, 13(45), 53323–53345. https://doi.org/10.1021/acsami.1c04544

    Article  Google Scholar 

  23. Chen, G., Gu, Y., Tsang, H., Hines, D. R., & Das, S. (2018). The effect of droplet sizes on overspray in aerosol-jet printing. Advanced Engineering Materials, 20(8), 1701084. https://doi.org/10.1002/adem.201701084

    Article  Google Scholar 

  24. Binder, S., Glatthaar, M., & Rädlein, E. (2014). Analytical investigation of aerosol jet printing. Aerosol Science and Technology, 48(9), 924–929. https://doi.org/10.1080/02786826.2014.940439

    Article  Google Scholar 

  25. Verheecke, W., Van Dyck, M., Vogeler, F., Voet, A., Valkenaers, H. (2012). In Conference Permanent Committee (Ed.) Proceedings of the 8th international DAAAM Baltic conference on mechatronics and system engineering. Tallinn University of Technology: Tallinn, Estonia, April 19−21, 2012

  26. Tait, J. G., Witkowska, E., Hirade, M., Ke, T.-H., Malinowski, P. E., Steudel, S., Adachi, C., & Heremans, P. (2015). Uniform aerosol jet printed polymer lines with 30μm width for 140 ppi resolution RGB organic light emitting diodes. Organic Electronics, 22, 40–43. https://doi.org/10.1016/j.orgel.2015.03.034

    Article  Google Scholar 

  27. Feng, J. Q. (2017). A computational study of particle deposition patterns from a circular laminar jet. JAFM, 10(4), 1001–1012. https://doi.org/10.18869/acadpub.jafm.73.241.27233

    Article  Google Scholar 

  28. Feng, J. Q. (2017). A computational study of high-speed microdroplet impact onto a smooth solid surface. JAFM, 10(1), 243–256. https://doi.org/10.18869/acadpub.jafm.73.238.26440

    Article  Google Scholar 

  29. Salary, R., Lombardi, J. P., Weerawarne, D. L., Rao, P., & Poliks, M. D. (2021). A computational fluid dynamics investigation of pneumatic atomization, aerosol transport, and deposition in aerosol jet printing process. Journal of Micro and Nano-Manufacturing, 9(1), 010903. https://doi.org/10.1115/1.4049958

    Article  Google Scholar 

  30. Tourloukis, G., Stoyanov, S., Tilford, T., & Bailey, C. (2015). Data driven approach to quality assessment of 3D printed electronic products. In 2015 38th International spring seminar on electronics technology (ISSE) (pp. 300–305). https://doi.org/10.1109/ISSE.2015.7248010

  31. Zhang, H., Moon, S. K., & Ngo, T. H. (2019). Hybrid machine learning method to determine the optimal operating process window in aerosol jet 3D printing. ACS Applied Materials & Interfaces, 11(19), 17994–18003.

    Article  Google Scholar 

  32. Lall, P., Abrol, A., Kothari, N., Leever, B., & Miller, S. (2020). Process capability of aerosol-jet additive processes for long-runs up to 10-hours. Journal of Electronic Packaging, 142(4), 041003. https://doi.org/10.1115/1.4048535

    Article  Google Scholar 

  33. Yuan, J., Wang, K., Yu, T., & Fang, M. (2008). Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression. International Journal of Machine Tools and Manufacture, 48(1), 47–60. https://doi.org/10.1016/j.ijmachtools.2007.07.011

    Article  Google Scholar 

  34. Tang, Q., Lau, Y. B., Hu, S., Yan, W., Yang, Y., & Chen, T. (2010). Response surface methodology using Gaussian processes: Towards optimizing the trans-stilbene epoxidation over Co2+–NaX catalysts. Chemical Engineering Journal, 156(2), 423–431. https://doi.org/10.1016/j.cej.2009.11.002

    Article  Google Scholar 

  35. Chi, G., Hu, S., Yang, Y., & Chen, T. (2012). Response surface methodology with prediction uncertainty: A multi-objective optimisation approach. Chemical Engineering Research and Design, 90(9), 1235–1244. https://doi.org/10.1016/j.cherd.2011.12.012

    Article  Google Scholar 

  36. Cutler, A., Cutler, D. R., Stevens, J. R. (2012). Random forests. In C. Zhang, & Y. Ma (Eds.), Ensemble machine learning (pp. 157–175). Springer US. https://doi.org/10.1007/978-1-4419-9326-7_5

  37. Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  38. Schulz, E., Speekenbrink, M., & Krause, A. (2018). A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. Journal of Mathematical Psychology, 85, 1–16. https://doi.org/10.1016/j.jmp.2018.03.001

  39. Li, B., Tian, X., & Zhang, M. (2022). Modeling and multi-objective optimization method of machine tool energy consumption considering tool wear. International Journal of Precision Engineering and Manufacturing-Green Technology., 9(1), 127–141. https://doi.org/10.1007/s40684-021-00320-z

    Article  Google Scholar 

  40. Li, F.-X., & Li, Z.-Z. (2018). Multi-objective global optimization for deformation near a hole in an oxide forming alloy foil subjected to thermal cycling. International Journal of Precision Engineering and Manufacturing-Green Technology., 5(2), 261–269. https://doi.org/10.1007/s40684-018-0027-4

    Article  Google Scholar 

  41. La Fé Perdomo, I., Quiza, R., Haeseldonckx, D., & Rivas, M. (2020). Sustainability-focused multi-objective optimization of a turning process. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 1009–1018.

    Article  Google Scholar 

  42. Li, Z. (2022). Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Computers, Environment and Urban Systems, 96, 101845. https://doi.org/10.1016/j.compenvurbsys.2022.101845

    Article  Google Scholar 

  43. Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural Computation, 29(9), 2352–2449. https://doi.org/10.1162/neco_a_00990

    Article  MathSciNet  Google Scholar 

  44. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354–377. https://doi.org/10.1016/j.patcog.2017.10.013

    Article  Google Scholar 

Download references

Acknowledgements

This research work was conducted in the Intelligent Manufacturing Laboratory with funding support from Suzhou University (No. 2021XJPT51, No. 2021yzd08, No. 2021BSK023, No. 2019xjzdxk1). This research was also supported by the Nano & Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (No. 2021M3D1A2047721) and the Basic Research Program funded by the Korea Institute of Machinery & Materials (KIMM) (No. NK242J).

Author information

Authors and Affiliations

Authors

Contributions

ML: Methodology, Investigation, Writing—original draft. HZ: Methodology, Investigation. JPC: Methodology, Writing—review & editing. ZL: Conceptualization, Methodology, Writing—original draft. SY: Writing—original draft, Writing—review & editing.

Corresponding authors

Correspondence to Joon Phil Choi or Haining Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The implementation of LHS and the corresponding experimental points are described in the following appendix.

If the design space is a unit hypercube \({\left[\mathrm{0,1}\right]}^{\mathrm{K}}\), the experimental points based on LHS can be directly obtained by implementing the following Matlab function

$${\text{X }} = {\text{ lhsdesign}}\left( {{\text{N}},{\text{ K}}} \right)$$
(A1)

where N is the number of designed experimental points, K is the dimension of the sampled unit hypercube, X is a returned N×K matrix containing the designed experimental points.

In this research, as the design space is not a unit hypercube, normalization is required before the LHS experimental design can be implemented, followed by projecting the obtained points back to the original design space. The table below shows the designed experimental points using LHS in this study (Table A1).

Table A1 The designed experiments based on LHS

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, Z., Yin, S. et al. Comparison and Identification of Optimal Machine Learning Model for Rapid Optimization of Printed Line Characteristics of Aerosol Jet Printing Technology. Int. J. of Precis. Eng. and Manuf.-Green Tech. 11, 71–87 (2024). https://doi.org/10.1007/s40684-023-00528-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-023-00528-1

Keywords

Navigation