Log in

Insights Into Systemic Sclerosis from Gene Expression Profiling

  • Scleroderma (S Bhattacharyya, Section Editor)
  • Published:
Current Treatment Options in Rheumatology Aims and scope Submit manuscript

Abstract

Purpose of review

The emergence of genomic data science stands poised to revolutionize our molecular understanding of the heterogeneity of complex diseases including systemic autoimmune diseases. In systemic sclerosis (SSc), bulk and single-cell transcriptomics have provided a new lens into the heterogeneity of this complex condition, both in terms of molecular heterogeneity, treatment response, and cell types important for the disease.

Recent findings

Transcriptomics has revealed reproducible patterns of gene expression among SSc patients. These conserved patterns of gene expression provide insights into SSc etiology, and evidence suggests that these groups may have important implications for treatment decisions by targeting specific patients. Integration and analyses of publicly available data are providing new insights into the disease. Single-cell technologies are illuminating cell types that may be important in pathogenesis. The disease trajectory for SSc remains difficult to predict, but the interactions between adaptive and innate immune cells with tissue-resident stromal cells may play an important role.

Summary

The heterogeneity in SSc can be broken down and quantified using molecular methods that range from bulk analysis to single cells. Further study of cellular and molecular dynamics in end-target tissues is likely to result in better disease management through personalized, data-driven treatment decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Peoples C, Medsger TA Jr, Lucas M, Rosario BL, Feghali-Bostwick CA. Gender differences in systemic sclerosis: relationship to clinical features, serologic status and outcomes. J Scleroderma Relat Disord. 2016;1(2):177–240. https://doi.org/10.5301/jsrd.5000209.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Allanore Y, Simms R, Distler O, Trojanowska M, Pope J, Denton CP, et al. Systemic sclerosis. Nat Rev Dis Primers. 2015;1:15002. https://doi.org/10.1038/nrdp.2015.2.

    Article  PubMed  Google Scholar 

  3. Hussein H, Lee P, Chau C, Johnson SR. The effect of male sex on survival in systemic sclerosis. J Rheumatol. 2014;41(11):2193–200. https://doi.org/10.3899/jrheum.140006.

    Article  PubMed  Google Scholar 

  4. Pérez-Bocanegra C, Solans-Laqué R, Simeón-Aznar CP, Campillo M, Fonollosa-Pla V, Vilardell-Tarrés M. Age-related survival and clinical features in systemic sclerosis patients older or younger than 65 at diagnosis. Rheumatology (Oxford). 2010;49(6):1112–7. https://doi.org/10.1093/rheumatology/keq046.

    Article  Google Scholar 

  5. Barnes J, Mayes MD. Epidemiology of systemic sclerosis: incidence, prevalence, survival, risk factors, malignancy, and environmental triggers. Curr Opin Rheumatol. 2012;24(2):165–70. https://doi.org/10.1097/BOR.0b013e32834ff2e8.

    Article  PubMed  Google Scholar 

  6. Gelber AC, Manno RL, Shah AA, Woods A, Le EN, Boin F, et al. Race and association with disease manifestations and mortality in scleroderma: a 20-year experience at the Johns Hopkins Scleroderma Center and review of the literature. Medicine (Baltimore). 2013;92(4):191–205. https://doi.org/10.1097/MD.0b013e31829be125.

    Article  Google Scholar 

  7. Blanco I, Mathai S, Shafiq M, Boyce D, Kolb TM, Chami H, et al. Severity of systemic sclerosis-associated pulmonary arterial hypertension in African Americans. Medicine (Baltimore). 2014;93(5):177–85. https://doi.org/10.1097/MD.0000000000000032.

    Article  Google Scholar 

  8. Morgan ND, Shah AA, Mayes MD, Domsic RT, Medsger TA Jr, Steen VD, et al. Clinical and serological features of systemic sclerosis in a multicenter African American cohort: analysis of the genome research in African American scleroderma patients clinical database. Medicine (Baltimore). 2017;96(51):e8980. https://doi.org/10.1097/MD.0000000000008980.

    Article  PubMed Central  Google Scholar 

  9. Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA, Wigley FM, et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science. 2014;343(6167):152–7. https://doi.org/10.1126/science.1246886.

    Article  CAS  PubMed  Google Scholar 

  10. Fanning GC, Welsh KI, Bunn C, Du Bois R, Black CM. HLA associations in three mutually exclusive autoantibody subgroups in UK systemic sclerosis patients. Br J Rheumatol. 1998;37(2):201–7.

    Article  CAS  Google Scholar 

  11. Spencer-Green G, Alter D, Welch HG. Test performance in systemic sclerosis: anti-centromere and anti-Scl-70 antibodies. Am J Med. 1997;103(3):242–8.

    Article  CAS  Google Scholar 

  12. Ho KT, Reveille JD. The clinical relevance of autoantibodies in scleroderma. Arthritis Res Ther. 2003;5(2):80–93.

    Article  CAS  Google Scholar 

  13. Khimdas S, Harding S, Bonner A, Zummer B, Baron M, Pope J, et al. Associations with digital ulcers in a large cohort of systemic sclerosis: results from the Canadian Scleroderma Research Group registry. Arthritis Care Res. 2011;63(1):142–9. https://doi.org/10.1002/acr.20336.

    Article  Google Scholar 

  14. Wirz EG, Jaeger VK, Allanore Y, Riemekasten G, Hachulla E, Distler O, et al. Incidence and predictors of cutaneous manifestations during the early course of systemic sclerosis: a 10-year longitudinal study from the EUSTAR database. Ann Rheum Dis. 2016;75(7):1285–92. https://doi.org/10.1136/annrheumdis-2015-207271.

    Article  PubMed  Google Scholar 

  15. Hamaguchi Y, Kodera M, Matsushita T, Hasegawa M, Inaba Y, Usuda T, et al. Clinical and immunologic predictors of scleroderma renal crisis in Japanese systemic sclerosis patients with anti-RNA polymerase III autoantibodies. Arthritis Rheum. 2015;67(4):1045–52. https://doi.org/10.1002/art.38994.

    Article  CAS  Google Scholar 

  16. Steen VD, Medsger TA Jr. Severe organ involvement in systemic sclerosis with diffuse scleroderma. Arthritis Rheum. 2000;43(11):2437–44. https://doi.org/10.1002/1529-0131(200011)43:11<2437::AID-ANR10>3.0.CO;2-U.

    Article  CAS  PubMed  Google Scholar 

  17. LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr, et al. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol. 1988;15(2):202–5.

    CAS  PubMed  Google Scholar 

  18. Steen VD, Medsger TA Jr. Improvement in skin thickening in systemic sclerosis associated with improved survival. Arthritis Rheum. 2001;44(12):2828–35.

    Article  CAS  Google Scholar 

  19. Shand L, Lunt M, Nihtyanova S, Hoseini M, Silman A, Black CM, et al. Relationship between change in skin score and disease outcome in diffuse cutaneous systemic sclerosis: application of a latent linear trajectory model. Arthritis Rheum. 2007;56(7):2422–31. https://doi.org/10.1002/art.22721.

    Article  PubMed  Google Scholar 

  20. Martyanov V, Whitfield ML. Molecular stratification and precision medicine in systemic sclerosis from genomic and proteomic data. Curr Opin Rheumatol. 2016;28(1):83–8. https://doi.org/10.1097/BOR.0000000000000237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. https://doi.org/10.1038/35000501.

    Article  CAS  PubMed  Google Scholar 

  22. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52. https://doi.org/10.1038/35021093.

    Article  CAS  PubMed  Google Scholar 

  23. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74. https://doi.org/10.1073/pnas.191367098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. https://doi.org/10.1038/nature11252.

    Article  CAS  Google Scholar 

  25. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21(11):1350–6. https://doi.org/10.1038/nm.3967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cancer Genome Atlas Research N. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25. https://doi.org/10.1038/nature11404.

    Article  CAS  Google Scholar 

  27. Wilkerson MD, Yin X, Hoadley KA, Liu Y, Hayward MC, Cabanski CR, et al. Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and correspond to normal cell types. Clin Cancer Res. 2010;16(19):4864–75. https://doi.org/10.1158/1078-0432.CCR-10-0199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15. https://doi.org/10.1038/nature10166.

    Article  CAS  Google Scholar 

  29. Verhaak RG, Wouters BJ, Erpelinck CA, Abbas S, Beverloo HB, Lugthart S, et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica. 2009;94(1):131–4. https://doi.org/10.3324/haematol.13299.

    Article  PubMed  Google Scholar 

  30. Cancer Genome Atlas Research N, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74. https://doi.org/10.1056/NEJMoa1301689.

    Article  CAS  Google Scholar 

  31. Hennigs A, Riedel F, Gondos A, Sinn P, Schirmacher P, Marme F, et al. Prognosis of breast cancer molecular subtypes in routine clinical care: a large prospective cohort study. BMC Cancer. 2016;16(1):734. https://doi.org/10.1186/s12885-016-2766-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kao KJ, Chang KM, Hsu HC, Huang AT. Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization. BMC Cancer. 2011;11:143. https://doi.org/10.1186/1471-2407-11-143.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res. 2005;11(16):5678–85. https://doi.org/10.1158/1078-0432.CCR-04-2421.

    Article  CAS  PubMed  Google Scholar 

  34. Milano A, Pendergrass SA, Sargent JL, George LK, McCalmont TH, Connolly MK, et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS One. 2008;3(7):e2696. https://doi.org/10.1371/journal.pone.0002696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Assassi S, Wu M, Tan FK, Chang J, Graham TA, Furst DE, et al. Skin gene expression correlates of severity of interstitial lung disease in systemic sclerosis. Arthritis Rheum. 2013;65(11):2917–27. https://doi.org/10.1002/art.38101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hsu E, Shi H, Jordan RM, Lyons-Weiler J, Pilewski JM, Feghali-Bostwick CA. Lung tissues in patients with systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension. Arthritis Rheum. 2011;63(3):783–94. https://doi.org/10.1002/art.30159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vreća M, Zeković A, Damjanov N, Andjelković M, Ugrin M, Pavlović S, et al. Expression of TLR7, TLR9, JAK2, and STAT3 genes in peripheral blood mononuclear cells from patients with systemic sclerosis. J Appl Genet. 2018;59(1):59–66. https://doi.org/10.1007/s13353-017-0415-4.

    Article  CAS  PubMed  Google Scholar 

  38. Tan FK, Zhou X, Mayes MD, Gourh P, Guo X, Marcum C, et al. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford). 2006;45(6):694–702. https://doi.org/10.1093/rheumatology/kei244.

    Article  CAS  Google Scholar 

  39. Beretta L, Barturen G, Vigone B, Bellocchi C, Hunzelmann N, De Langhe E, et al. Genome-wide whole blood transcriptome profiling in a large European cohort of systemic sclerosis patients. Ann Rheum Dis. 2020;79(9):1218–26. https://doi.org/10.1136/annrheumdis-2020-217116.

    Article  CAS  PubMed  Google Scholar 

  40. Taroni JN, Martyanov V, Huang CC, Mahoney JM, Hirano I, Shetuni B, et al. Molecular characterization of systemic sclerosis esophageal pathology identifies inflammatory and proliferative signatures. Arthritis Res Ther. 2015;17:194. https://doi.org/10.1186/s13075-015-0695-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pendergrass SA, Hayes E, Farina G, Lemaire R, Farber HW, Whitfield ML, et al. Limited systemic sclerosis patients with pulmonary arterial hypertension show biomarkers of inflammation and vascular injury. PLoS One. 2010;5(8):e12106. https://doi.org/10.1371/journal.pone.0012106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pendergrass SA, Lemaire R, Francis IP, Mahoney JM, Lafyatis R, Whitfield ML. Intrinsic gene expression subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies. J Invest Dermatol. 2012;132(5):1363–73. https://doi.org/10.1038/jid.2011.472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hinchcliff M, Huang CC, Wood TA, Matthew Mahoney J, Martyanov V, Bhattacharyya S, et al. Molecular signatures in skin associated with clinical improvement during mycophenolate treatment in systemic sclerosis. J Invest Dermatol. 2013;133(8):1979–89. https://doi.org/10.1038/jid.2013.130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taroni JN, Martyanov V, Mahoney JM, Whitfield ML. A functional genomic meta-analysis of clinical trials in systemic sclerosis: toward precision medicine and combination therapy. J Invest Dermatol. 2017;137(5):1033–41. https://doi.org/10.1016/j.jid.2016.12.007.

    Article  CAS  PubMed  Google Scholar 

  45. Assassi S, Swindell WR, Wu M, Tan FD, Khanna D, Furst DE, et al. Dissecting the heterogeneity of skin gene expression patterns in systemic sclerosis. Arthritis Rheum. 2015;67(11):3016–26. https://doi.org/10.1002/art.39289.

    Article  CAS  Google Scholar 

  46. • Moon SJ, Bae JM, Park KS, Tagkopoulos I, Kim KJ. Compendium of skin molecular signatures identifies key pathological features associated with fibrosis in systemic sclerosis. Ann Rheum Dis. 2019;78(6):817–25. https://doi.org/10.1136/annrheumdis-2018-214778. Performed an integrative analysis of eight gene expression datasets, including 173 SSc patients, to identify four unique clusters of patients and activity signatures for SSc-relevent pathways.

    Article  CAS  PubMed  Google Scholar 

  47. •• Xu X, Ramanujam M, Visvanathan S, Assassi S, Liu Z, Li L. Transcriptional insights into pathogenesis of cutaneous systemic sclerosis using pathway driven meta-analysis assisted by machine learning methods. PLoS One. 2020;15(11):e0242863. https://doi.org/10.1371/journal.pone.0242863. Computational analysis of nine geneexpression datasets to identify 80 gene expression signatures to further stratify the original intrinsic subsets into eight unique subtypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mahoney JM, Taroni J, Martyanov V, Wood TA, Greene CS, Pioli PA, et al. Systems level analysis of systemic sclerosis shows a network of immune and profibrotic pathways connected with genetic polymorphisms. PLoS Comput Biol. 2015;11(1):e1004005. https://doi.org/10.1371/journal.pcbi.1004005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972-2002. Ann Rheum Dis. 2007;66(7):940–4. https://doi.org/10.1136/ard.2006.066068.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Allanore Y, Matucci-Cerinic M, Distler O. Treatment of systemic sclerosis: is there any hope for the future? RMD Open. 2016;2(2):e000260. https://doi.org/10.1136/rmdopen-2016-000260.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Matucci-Cerinic M, Steen VD, Furst DE, Seibold JR. Clinical trials in systemic sclerosis: lessons learned and outcomes. Arthritis Res Ther. 2007;9(Suppl 2):S7. https://doi.org/10.1186/ar2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gordon JK, Martyanov V, Magro C, Wildman HF, Wood TA, Huang WT, et al. Nilotinib (Tasigna) in the treatment of early diffuse systemic sclerosis: an open-label, pilot clinical trial. Arthritis Res Ther. 2015;17:213. https://doi.org/10.1186/s13075-015-0721-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rice LM, Padilla CM, McLaughlin SR, Mathes A, Ziemek J, Goummih S, et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest. 2015;125(7):2795–807. https://doi.org/10.1172/JCI77958.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Stifano G, Sornasse T, Rice LM, Na L, Chen-Harris H, Khanna D, et al. Skin gene expression is prognostic for the trajectory of skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 2018;70(6):912–9. https://doi.org/10.1002/art.40455.

    Article  CAS  Google Scholar 

  55. Sargent JL, Milano A, Bhattacharyya S, Varga J, Connolly MK, Chang HY, et al. A TGFbeta-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. J Invest Dermatol. 2010;130(3):694–705. https://doi.org/10.1038/jid.2009.318.

    Article  CAS  PubMed  Google Scholar 

  56. Hinchcliff M, Toledo DM, Taroni JN, Wood TA, Franks JM, Ball MS, et al. Mycophenolate mofetil treatment of systemic sclerosis reduces myeloid cell numbers and attenuates the inflammatory gene signature in skin. J Invest Dermatol. 2018;138(6):1301–10. https://doi.org/10.1016/j.jid.2018.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baker KP, Edwards BM, Main SH, Choi GH, Wager RE, Halpern WG, et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum. 2003;48(11):3253–65. https://doi.org/10.1002/art.11299.

    Article  CAS  PubMed  Google Scholar 

  58. •• Spiera R, Hummers L, Chung L, Frech TM, Domsic R, Hsu V, et al. Safety and efficacy of lenabasum in a phase II, randomized, placebo-controlled trial in adults with systemic sclerosis. Arthritis Rheum. 2020;72(8):1350–60. https://doi.org/10.1002/art.41294. Gene expression analysis of inflammation and fibrosis gene signatures in particioants of a double-blind, placebo-controlled trial of lenabasum.

    Article  CAS  Google Scholar 

  59. Chakravarty EF, Martyanov V, Fiorentino D, Wood TA, Haddon DJ, Jarrell JA, et al. Gene expression changes reflect clinical response in a placebo-controlled randomized trial of abatacept in patients with diffuse cutaneous systemic sclerosis. Arthritis Res Ther. 2015;17:159. https://doi.org/10.1186/s13075-015-0669-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. •• Khanna D, Spino C, Johnson S, Chung L, Whitfield ML, Denton CP, et al. Abatacept in early diffuse cutaneous systemic sclerosis: results of a phase II investigator-initiated, multicenter, double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 2020;72(1):125–36. https://doi.org/10.1002/art.41055. Blinded gene expression analysis of participants in the Abatacept to Treat Diffuse Cutaneous Systemic Sclerosis (ASSET) trial demonstrating that intrinsic gene expression subsets responded significantly differently to treatment.

    Article  CAS  Google Scholar 

  61. Medsger TA Jr. Natural history of systemic sclerosis and the assessment of disease activity, severity, functional status, and psychologic well-being. Rheum Dis Clin N Am. 2003;29(2):255–73 vi.

  62. Shah AA, Wigley FM. My approach to the treatment of scleroderma. Mayo Clin Proc. 2013;88(4):377–93. https://doi.org/10.1016/j.mayocp.2013.01.018.

    Article  PubMed  Google Scholar 

  63. Sullivan KM, Goldmuntz EA, Keyes-Elstein L, McSweeney PA, Pinckney A, Welch B, et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N Engl J Med. 2018;378(1):35–47.

    Article  Google Scholar 

  64. •• Franks JM, Martyanov V, Wang Y, Wood TA, Pinckney A, Crofford LJ, et al. Machine learning predicts stem cell transplant response in severe scleroderma. Ann Rheum Dis. 2020;79(12):1608–15. https://doi.org/10.1136/annrheumdis-2020-217033. Gene expression analysis of peripheral blood from participantys in the Scleroderma Cyclophosphamide or Transplantation (SCOT) trial demonstrating prognostic potential on intrinsic molecular subsets.

    Article  CAS  PubMed  Google Scholar 

  65. Gordon JK, Martyanov V, Franks JM, Bernstein EJ, Szymonifka J, Magro C, et al. Belimumab for the treatment of early diffuse systemic sclerosis: results of a randomized, double-blind, placebo-controlled, pilot trial. Arthritis Rheum. 2018;70(2):308–16. https://doi.org/10.1002/art.40358.

    Article  CAS  Google Scholar 

  66. Altman N, Krzywinski M. The curse(s) of dimensionality. Nat Methods. 2018;15(6):399–400. https://doi.org/10.1038/s41592-018-0019-x.

    Article  CAS  PubMed  Google Scholar 

  67. Zimek A, Schuber E, Kriegel H. A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining. 2012;5(5):363–87.

    Article  Google Scholar 

  68. Krzywinski M, Altman N. Multiple linear regression. Nat Methods. 2015;12(12):1103–4.

    Article  CAS  Google Scholar 

  69. Reality check on reproducibility. Nature. 2016;533(7604):437. doi: 10.1038/533437a.

  70. Franks JM, Cai G, Whitfield ML. Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data. Bioinformatics. 2018. https://doi.org/10.1093/bioinformatics/bty026.

  71. Taroni JN, Greene CS, Martyanov V, Wood TA, Christmann RB, Farber HW, et al. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med. 2017;9(1):27. https://doi.org/10.1186/s13073-017-0417-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang Y, Franks JM, Yang M, Toledo DM, Wood TA, Hinchcliff M, et al. Regulator combinations identify systemic sclerosis patients with more severe disease. JCI Insight. 2020;5(17). https://doi.org/10.1172/jci.insight.137567.

  73. • Karimizadeh E, Sharifi-Zarchi A, Nikaein H, Salehi S, Salamatian B, Elmi N, et al. Analysis of gene expression profiles and protein-protein interaction networks in multiple tissues of systemic sclerosis. BMC Med Genet. 2019;12(1):199. https://doi.org/10.1186/s12920-019-0632-2. Integrative analysis of ten published gene expressiondatasets across multiple tissues to identify conserved disease signatures.

    Article  CAS  Google Scholar 

  74. •• Kim KJ, Moon SJ, Park KS. Network-based modeling of drug effects on disease module in systemic sclerosis. Sci Rep. 2020;10(1):13393. https://doi.org/10.1038/s41598-020-70280-y. Computational network analysis to identify drug targets and potential therapeutics from 179 unique SSc-associated genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Franks JM, Martyanov V, Cai G, Wang Y, Li Z, Wood TA, et al. A machine learning classifier for assigning individual patients with systemic sclerosis to intrinsic molecular subsets. Arthritis Rheum. 2019. https://doi.org/10.1002/art.40898.

  76. Lofgren S, Hinchcliff M, Carns M, Wood T, Aren K, Arroyo E, et al. Integrated, multicohort analysis of systemic sclerosis identifies robust transcriptional signature of disease severity. JCI Insight. 2016;1(21):e89073. Epub 2016/12/22. https://doi.org/10.1172/jci.insight.89073.

  77. • Showalter K, Spiera R, Magro C, Agius P, Martyanov V, Franks JM, et al. Machine learning integration of scleroderma histology and gene expression identifies fibroblast polarisation as a hallmark of clinical severity and improvement. Ann Rheum Dis. 2021;80(2):228–37. https://doi.org/10.1136/annrheumdis-2020-217840. Gene expression and histology were performed on participants from two clinical trials. Machine learning algorithms were used to link important signatures between the two data types and identify an activated fibroblast signature in patients who clinically improved.

    Article  CAS  PubMed  Google Scholar 

  78. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. • Skaug B, Khanna D, Swindell WR, Hinchcliff ME, Frech TM, Steen VD, et al. Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Ann Rheum Dis. 2020;79(3):379–86. https://doi.org/10.1136/annrheumdis-2019-215894. RNA-sequencing performed on participants of the Prospective Registry for Early Systemic Sclerosis (PRESS) cohort demonstrating that adaptive and immune cell signatures are evident in early dcSSc and correlate to clinical measures.

    Article  CAS  PubMed  Google Scholar 

  80. Ha R, Mutasa S, Karcich J, Gupta N, Pascual Van Sant E, Nemer J, et al. Predicting breast cancer molecular subtype with MRI dataset utilizing convolutional neural network algorithm. J Digit Imaging. 2019. https://doi.org/10.1007/s10278-019-00179-2.

  81. Young JD, Cai C, Lu X. Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma. BMC Bioinformatics. 2017;18(Suppl 11):381. https://doi.org/10.1186/s12859-017-1798-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Way GP, Greene CS. Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders. Pac Symp Biocomput. 2018;23:80–91.

    PubMed  PubMed Central  Google Scholar 

  83. Apostolidis SA, Stifano G, Tabib T, Rice LM, Morse CM, Kahaleh B, et al. Single cell RNA sequencing identifies HSPG2 and APLNR as markers of endothelial cell injury in systemic sclerosis skin. Front Immunol. 2018;9:2191. https://doi.org/10.3389/fimmu.2018.02191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gaydosik AM, Tabib T, Domsic R, Khanna D, Lafyatis R, Fuschiotti P. Single-cell transcriptome analysis identifies skin-specific T-cell responses in systemic sclerosis. Ann Rheum Dis. 2021. https://doi.org/10.1136/annrheumdis-2021-220209.

  85. Valenzi E, Bulik M, Tabib T, Morse C, Sembrat J, Trejo Bittar H, et al. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann Rheum Dis. 2019;78(10):1379–87. https://doi.org/10.1136/annrheumdis-2018-214865.

    Article  CAS  PubMed  Google Scholar 

  86. • Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199(12):1517–36. https://doi.org/10.1164/rccm.201712-2410OC. Single-cell sequencing of lung explants from SSc patients and other clinical cases of pulmonary fibrosis to characterize cell types including a profibrotic alveolar macrophage which was only identified in patiens with fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Moreno-Moral A, Bagnati M, Koturan S, Ko JH, Fonseca C, Harmston N, et al. Changes in macrophage transcriptome associate with systemic sclerosis and mediate. Ann Rheum Dis. 2018;77(4):596–601. https://doi.org/10.1136/annrheumdis-2017-212454.

    Article  CAS  PubMed  Google Scholar 

  88. Bhandari R, Ball MS, Martyanov V, Popovich D, Schaafsma E, Han S, et al. Profibrotic activation of human macrophages in systemic sclerosis. Arthritis Rheum. 2020;72(7):1160–9. https://doi.org/10.1002/art.41243.

    Article  CAS  Google Scholar 

  89. •• Kobayashi S, Nagafuchi Y, Okubo M, Sugimori Y, Shirai H, Hatano H, et al. Integrated bulk and single-cell RNA-sequencing identified disease-relevant monocytes and a gene network module underlying systemic sclerosis. J Autoimmun. 2021;116:102547. https://doi.org/10.1016/j.jaut.2020.102547. Bulk RNA-sequencing and flow cytometry was performed on peripheral blood samples from 21 Japanese SSc patients and 13 matched controls to identify an inflammatory gene module. The authors leveraged publicly available single-cell data to identify a cluster of monocytes that may be linked to SSc pathophysiology.

    Article  CAS  PubMed  Google Scholar 

  90. Valenzi E, Tabib T, Papazoglou A, Sembrat J, Trejo Bittar HE, Rojas M, et al. Disparate interferon signaling and shared aberrant basaloid cells in single-cell profiling of idiopathic pulmonary fibrosis and systemic sclerosis-associated interstitial lung disease. Front Immunol. 2021;12:595811. https://doi.org/10.3389/fimmu.2021.595811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Whitfield Ph.D..

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

Jennifer Franks declares that she has no conflict of interest. Michael Whitfield reports grants, personal fees, and other from Celdara Medical LLC, grants and personal fees from Bristol Myers Squibb, grants and personal fees from Corbus Pharmaceuticals, personal fees from Abbvie, and personal fees from Acceleron, outside the submitted work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Scleroderma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franks, J.M., Whitfield, M.L. Insights Into Systemic Sclerosis from Gene Expression Profiling. Curr Treat Options in Rheum 7, 208–221 (2021). https://doi.org/10.1007/s40674-021-00183-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40674-021-00183-0

Keywords

Navigation