Log in

Bone involvement and mineral metabolism in Williams’ syndrome

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Context

The previous studies suggested a possible increased risk of hypercalcaemia and reduced bone mineral density (BMD) in Williams’ syndrome (WS). However, an extensive study regarding bone metabolism has never been performed.

Objective

To investigate bone health in young adults with WS.

Design

Cross-sectional study.

Settings

Endocrinology and Metabolic Diseases and Medical Genetic Units.

Patients

29 WS young adults and 29 age- and sex-matched controls.

Main outcome measures

In all subjects, calcium, phosphorus, bone alkaline phosphatase (bALP), parathyroid hormone (PTH), 25-hydroxyvitamin D (25OHVitD), osteocalcin (OC), carboxyterminal cross-linking telopeptide of type I collagen (CTX), 24-h urinary calcium and phosphorus, femoral-neck (FN) and lumbar-spine (LS) BMD and vertebral fractures (VFx) were assessed. In 19 patients, serum fibroblast growth factor-23 (FGF23) levels were measured.

Results

WS patients showed lower phosphorus (3.1 ± 0.7 vs 3.8 ± 0.5 mg/dL, p = 0.0001) and TmP/GFR (0.81 ± 0.32 vs 1.06 ± 0.25 mmol/L, p = 0.001), and an increased prevalence (p = 0.005) of hypophosphoremia (34.5 vs 3.4%) and reduced TmP/GFR (37.9 vs 3.4%). Moreover, bALP (26.3 ± 8.5 vs 35.0 ± 8.0 U/L), PTH (24.5 ± 12.6 vs 33.7 ± 10.8 pg/mL), OC (19.4 ± 5.3 vs 24.5 ± 8.7 ng/mL), and FN-BMD (− 0.51 ± 0.32 vs 0.36 ± 0.32) were significantly lower (p < 0.05), while CTX significantly higher (401.2 ± 169.3 vs 322.3 ± 122.4 pg/mL, p < 0.05). Serum and urinary calcium and 25OHVitD levels, LS-BMD and VFx prevalence were comparable. No cases of hypercalcemia and suppressed FGF23 were documented. Patients with low vs normal phosphorus and low vs normal TmP/GFR showed comparable FGF23 levels. FGF23 did not correlate with phosphorus and TmP/GFR values.

Conclusions

Adult WS patients have reduced TmP/GFR, inappropriately normal FGF23 levels and an uncoupled bone turnover with low femoral BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Morris CA (2010) Introduction: Williams syndrome. Am J Med Genet C Semin Med Genet 154C(2):203–208

    Article  PubMed  PubMed Central  Google Scholar 

  2. Strømme P, Bjornstad P, Ramstad K (2002) Prevalence estimation of Williams syndrome. J Child Neurol 17:269–271

    Article  PubMed  Google Scholar 

  3. Schubert C (2009) The genomic basis of the Williams–Beuren syndrome. Cell Mol Life Sci 66(7):1178–1197

    Article  PubMed  CAS  Google Scholar 

  4. Pober BR (2010) Williams–Beuren syndrome. N Engl J Med 362(3):239–252 (Review)

    Article  PubMed  CAS  Google Scholar 

  5. Masserini B, Bedeschi MF, Bianchi V, Scuvera G, Beck-Peccoz P, Lalatta F, Selicorni A, Orsi E (2013) Prevalence of diabetes and pre-diabetes in a cohort of Italian young adults with Williams syndrome. Am J Med Genet A 161A(4):817–821

    Article  PubMed  CAS  Google Scholar 

  6. Sforzini C, Milani D, Fossali E, Barbato A, Grumieri G, Bianchetti MG, Selicorni A (2002) Renal tract ultrasonography and calcium homeostasis in Williams–Beuren syndrome. Pediatr Nephrol 17(11):899–902

    Article  PubMed  Google Scholar 

  7. Amenta S, Sofocleous C, Kolialexi A, Thomaidis L, Giouroukos S, Karavitakis E, Mavrou A, Kitsiou S, Kanavakis E, Fryssira H (2005) Clinical manifestations and molecular investigation of 50 patients with Williams syndrome in the Greek population. Pediatr Res 57(6):789–795

    Article  PubMed  Google Scholar 

  8. Jurado LP, Peoples R, Kaplan P, Hamel BC, Francke U (1996) Molecular definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin effects on growth. Am J Hum Genet 59(4):781–792

    CAS  Google Scholar 

  9. Sindhar S, Lugo M, Levin MD, Danback JR, Brink BD, Yu E, Dietzen DJ, Clark AL, Purgert CA, Waxler JL, Elder RW, Pober BR, Kozel BA (2016) Hypercalcemia in patients with Williams–Beuren syndrome. J Pediatr 178:254–260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cagle AP, Waguespack SG, Buckingham BA, Shankar RR, Dimeglio LA (2004) Severe infantile hypercalcemia associated with Williams syndrome successfully treated with intravenously administered pamidronate. Pediatrics 114(4):1091–1095

    Article  PubMed  Google Scholar 

  11. Garabédian M, Jacqz E, Guillozo H, Grimberg R, Guillot M, Gagnadoux MF, Broyer M, Lenoir G, Balsan S (1985) Elevated plasma 1,25-dihydroxyvitamin D concentrations in infants with hypercalcemia and an elfin facies. N Engl J Med 312(15):948–952

    Article  PubMed  Google Scholar 

  12. Culler FL, Jones KL, Deftos LJ (1985) Imparied calcitonin secretion in patients with Williams syndrome. J Pediatr 107(5):720–723

    Article  PubMed  CAS  Google Scholar 

  13. Cherniske EM, Carpenter TO, Klaiman C, Young E, Bregman J, Insogna K, Schultz RT, Pober BR (2004) Multisystem study of 20 older adults with Williams syndrome. Am J Med Genet A. 131:255–264

    Article  PubMed  Google Scholar 

  14. Garrow JS, Webster J (1985) Quetelet’s index (W/H2) as a measure of fatness. Int J Obes 9(2):147–153

    PubMed  CAS  Google Scholar 

  15. Figge J, Jabor A, Kazda A, Fencl V (1998) Anion gap and hypoalbuminemia. Crit Care Med 26(11):1807–1810

    Article  PubMed  CAS  Google Scholar 

  16. Hodgkinson A, Pyrah LN (1958) The urinary excretion of calcium and inorganic phosphate in 344 patients with calcium stone of renal origin. Br J Surg 46(195):10–18

    Article  PubMed  CAS  Google Scholar 

  17. Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K, Yamashita T, Fukumoto S (2002) Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 87(11):4957–4960

    Article  PubMed  CAS  Google Scholar 

  18. Walton RJ, Bijvoet OL (1975) Nomogram for derivation of renal threshold phosphate concentration. Lancet 2(7929):309–310

    Article  PubMed  CAS  Google Scholar 

  19. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148

    Article  PubMed  CAS  Google Scholar 

  20. Stagi S, Manoni C, Scalini P, Chiarelli F, Verrotti A, Cecchi C, Lapi E, Giglio S, Romano S, de Martino M (2016) Bone mineral status and metabolism in patients with Williams–Beuren syndrome. Hormones (Athens) 15(3):404–412

    Google Scholar 

  21. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444(7120):770–774

    Article  PubMed  CAS  Google Scholar 

  22. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281(10):6120–6123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Razzaque MS, Lanske B (2007) The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis. J Endocrinol 194(1):1–10 (Review)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Frishberg Y, Ito N, Rinat C, Yamazaki Y, Feinstein S, Urakawa I, Navon-Elkan P, Becker-Cohen R, Yamashita T, Araya K, Igarashi T, Fujita T, Fukumoto S (2007) Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23. J Bone Miner Res 22(2):235–242

    Article  PubMed  CAS  Google Scholar 

  25. El-Maouche D, Dumitrescu CE, Andreopoulou P, Gafni RI, Brillante BA, Bhattacharyya N, Fedarko NS, Collins MT (2016) Stability and degradation of fibroblast growth factor 23 (FGF23): the effect of time and temperature and assay type. Osteoporos Int 27(7):2345–2353

    Article  PubMed  CAS  Google Scholar 

  26. Smith ER, McMahon LP, Holt SG (2013) Method-specific differences in plasma fibroblast growth factor 23 measurement using four commercial ELISAs. Clin Chem Lab Med 51(10):1971–1981

    Article  PubMed  CAS  Google Scholar 

  27. Smith ER, Cai MM, McMahon LP, Holt SG (2012) Biological variability of plasma intact and C-terminal FGF23 measurements. J Clin Endocrinol Metab 97(9):3357–3365

    Article  PubMed  CAS  Google Scholar 

  28. Pool LR, Wolf M (2017) FGF23 and nutritional metabolism. Ann Rev Nutr 21(37):247–268

    Article  CAS  Google Scholar 

  29. Rodriguez-Ortiz ME, Lopez I, Muñoz-Castañeda JR, Martinez-Moreno JM, Ramírez AP, Pineda C, Canalejo A, Jaeger P, Aguilera-Tejero E, Rodriguez M, Felsenfeld A, Almaden Y (2012) Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol 23(7):1190–1197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Eller-Vainicher C, Cairoli E, Zhukouskaya VV, Morelli V, Palmieri S, Scillitani A, Beck-Peccoz P, Chiodini I (2013) Prevalence of subclinical contributors to low bone mineral density and/or fragility fracture. Eur J Endocrinol 169(2):225–237

    Article  PubMed  CAS  Google Scholar 

  31. Albers J, Schulze J, Beil FT, Gebauer M, Baranowsky A, Keller J, Marshall RP, Wintges K, Friedrich FW, Priemel M, Schilling AF, Rueger JM, Cornils K, Fehse B, Streichert T, Sauter G, Jakob F, Insogna KL, Pober B, Knobeloch KP, Francke U, Amling M, Schinke T (2011) Control of bone formation by the serpentine receptor Frizzled-9. J Cell Biol 192(6):1057–1072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tenenhouse HS (1999) X-linked hypophosphataemia: a homologous disorder in humans and mice. Nephrol Dial Transplant 14(2):333–341 (Review)

    Article  PubMed  CAS  Google Scholar 

  33. **ao ZS, Crenshaw M, Guo R, Nesbitt T, Drezner MK, Quarles LD (1998) Intrinsic mineralization defect in Hyp mouse osteoblasts. Am J Physiol 275(4 Pt 1):E700–E708

    PubMed  CAS  Google Scholar 

  34. Bruin WJ, Baylink DJ, Wergedal JE (1975) Acute inhibition of mineralization and stimulation of bone resorption mediated by hypophosphatemia. Endocrinology 96(2):394–399

    Article  PubMed  CAS  Google Scholar 

  35. Baylink D, Wergedal J, Stauffer M (1971) Formation, mineralization, and resorption of bone in hypophosphatemic rats. J Clin Invest 50(12):2519–2530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Krajisnik T, Björklund P, Marsell R, Ljunggren O, Akerström G, Jonsson KB, Westin G, Larsson TE (2007) Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 195(1):125–131

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Palmieri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmieri, S., Bedeschi, M.F., Cairoli, E. et al. Bone involvement and mineral metabolism in Williams’ syndrome. J Endocrinol Invest 42, 337–344 (2019). https://doi.org/10.1007/s40618-018-0924-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-018-0924-y

Keywords

Navigation