Log in

Treatment of Non-Tuberculous Mycobacterial Lung Disease

  • Mycobacterial Infections (H Bach, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

An Erratum to this article was published on 03 November 2016

Opinion statement

Treatment of non-tuberculous mycobacterial lung disease (NTM-LD) is challenging for several reasons including the relative resistance of NTM to currently available drugs and the difficulty in tolerating prolonged treatment with multiple drugs. Yet-to-be-done, large, multicenter, prospective randomized studies to establish the best regimens will also be arduous because multiple NTM species are known to cause human lung disease, differences in virulence and response to treatment between different species and strains within a species will make unbias randomization difficult, the need to distinguish relapse from a new infection, and the difficulty in adhering to the prescribed treatment due to intolerance, toxicity, and/or drug-drug interactions, often necessitating modification of therapeutic regimens. Furthermore, the out-of-state resident status of many patients seen at the relatively few centers that care for large number of NTM-LD patients pose logistical issues in monitoring response to treatment. Thus, current treatment regimens for NTM-LD are largely based on small case series, retrospective analyses, and guidelines based on expert opinions. It has been nearly 10 years since the publication of a consensus guideline for the treatment of NTM-LD. This review is a summary of the available evidence on the treatment of the major NTM-LD until more definitive studies and guidelines become available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Prevots DR, Marras TK. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med. 2015;36:13.

    Article  PubMed  Google Scholar 

  2. Lai CC, Tan CK, Chou CH, Hsu HL, Liao CH, Huang YT, et al. Increasing incidence of nontuberculous mycobacteria, Taiwan, 2000-2008. Emerg Infect Dis. 2010;16:294.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marras TK, Mendelson D, Marchand-Austin A, May K, Jamieson FB. Pulmonary nontuberculous mycobacterial disease, Ontario, Canada, 1998-2010. Emerg Infect Dis 2013; 19: 1889.

  4. Ringshausen FC, Wagner D, de Roux A, Diel R, Hohmann D, Hickstein L, et al. Prevalence of nontuberculous mycobacterial pulmonary disease, Germany, 2009-2014. Emerg Infect Dis. 2016;22:1102.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Thomson RM. NTM working group at Queensland TB Control Centre and Queensland Mycobacterial Reference Laboratory. Changing epidemiology of pulmonary nontuberculous mycobacteria infections. Emerg Infect Dis. 2010;16:1576.

    Article  PubMed  PubMed Central  Google Scholar 

  6. •Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med. 2012;185:881. A comprehensive study examining the prevalence of nontuberculous mycobacterial (NTM) lung disease in Medicare Part B Beneficiaries in the United States. It found that in this elderly population, the prevalence increased by 8.2% per year from 1997 to 2007, with significant racial/ethnic and geographic differences. Hawaii had the highest period prevalence among the 50 states at 396 cases of NTM lung disease per 100,000.

  7. Khan K, Wang J, Marras TK. Nontuberculous mycobacterial sensitization in the United States: national trends over three decades. Am J Respir Crit Care Dis. 2007;176:306.

    Article  Google Scholar 

  8. Williams MM, Yakrus MA, Arduino MJ, Cooksey RC, Crane CB, Banerjee SN, et al. Structural analysis of biofilm formation by rapidly and slowly growing nontuberculous mycobacteria. Appl Environ Microbiol. 2009;75:2091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mullis SN, Falkinham JO 3rd. Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials. J Appl Microbiol. 2013;115:908.

  10. Recht J, Kolter R. Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J Bacteriol. 2001;183:5718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sousa S, Bandeira M, Carvalho PA, Duarte A, Jordao L. Nontuberculous mycobacteria pathogenesis and biofilm assembly. Int J Mycobacteriol. 2015;4:36.

    Article  PubMed  Google Scholar 

  12. Simões M. Antimicrobial strategies effective against infectious bacterial biofilms. Curr Med Chem. 2011;18:2129.

    Article  PubMed  Google Scholar 

  13. Honda JR, Bernhard JN, Chan ED. Natural disasters and nontuberculous mycobacteria: a recipe for increased disease? Chest. 2015;147:304.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Falkinham JO 3rd, Iseman MD, de Haas P, van Soolingen D. Mycobacterium avium in a shower linked to pulmonary disease. J Water Health. 2008;6:209.

  15. •Wallace RJ Jr, Iakhiaeva E, Williams MD, Brown-Elliott BA, Vasireddy S, Vasireddy R, et al. Absence of Mycobacterium intracellulare and presence of Mycobacterium chimaera in household water and biofilm samples of patients in the United States with Mycobacterium avium complex respiratory disease. J Clin Microbiol. 2013;51:1747. This study sequenced specific genes of NTM isolated from water sources in households of patients with Mycobacterium avium complex (MAC) lung disease. While most of the clinical respiratory isolates (91 %) were M. intracellulare, unexpectedly most of the isolates (70 %) from household water samples were M. chimaera; in fact, no M. intracellulare were identified from the water sources. While this study does not necessarily imply that water or water-associated biofilms are not important sources of NTM infection, it does demonstrate that proper NTM species identification is important and that different MAC species occupydifferent environmental niches.

  16. Tortoli E, Rindi L, Garcia MJ, Chiaradonna P, Dei R, Garzelli C, et al. Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium Complex, to species rank as Mycobacterium chimaera sp. nov. Int J Syst Evol Microbiol. 2004;54(Pt 4):1277.

    Article  CAS  PubMed  Google Scholar 

  17. Schweickert B, Goldenberg O, Richter E, Göbel UB, Petrich A, Buchholz P, et al. Occurrence and clinical relevance of Mycobacterium chimaera sp. nov., Germany. Emerg Infect Dis. 2008;14:1443.

    Article  PubMed  PubMed Central  Google Scholar 

  18. ••Boyle DP, Zembower TR, Reddy S, Qi C. Comparison of clinical features, virulence, and relapse among Mycobacterium avium complex species. Am J Respir Crit Care Med. 2015;191:1310. With availability of gene sequencing, increasing number of distinct species are now identified under the “Mycobacterium avium complex (MAC)” umbrella. Using a clinical consensus definition of the presence of NTM lung disease, this study suggests (but does not necessarily prove) that the three major MAC species(M. avium, M. intracellulare, and M. chimaera) are likely to have differences in virulence.

  19. Frothingham R, Wilson KH. Sequence-based differentiation of strains in the Mycobacterium avium complex. J Bacteriol. 1993;175:2818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ben Salah I, Adékambi T, Raoult D, Drancourt M. rpoB sequence-based identification of Mycobacterium avium complex species. Microbiology. 2008;154:3715.

    Article  CAS  PubMed  Google Scholar 

  21. Zelazny AM, Root JM, Shea YR, Colombo RE, Shamputa IC, Stock F, et al. Cohort study of molecular identification and ty** of Mycobacterium abscessus, Mycobacterium massiliense, and Mycobacterium bolletii. J Clin Microbiol 2009; 47: 1985.

  22. Macheras E, Roux AL, Bastian S, Leão SC, Palaci M, Sivadon-Tardy V, et al. Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains. J Clin Microbiol. 2011;49:491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jang MA, Koh WJ, Huh HJ, Kim SY, Jeon K, Ki CS, et al. Distribution of nontuberculous mycobacteria by multigene sequence-based ty** and clinical significance of isolated strains. J Clin Microbiol. 2014;52:1207.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Research Committee of the British Thoracic Society. First randomised trial for pulmonary disease caused by M. avium intracellulare, M. malmoense and M. xenopi in HIV negative patients: rifampicin, ethambutol and isoniazid versus rifampicin and ethambutol. Thorax. 2001;56:167.

    Article  Google Scholar 

  25. Field SK, Cowie RL. Treatment of Mycobacterium avium-intracellulare Complex lung disease with a macrolide, ethambutol, and clofazimine. Chest. 2003;124:1482.

    Article  CAS  PubMed  Google Scholar 

  26. Jenkins PA, Campbell IA, Banks J, Gelder CM, Prescott RJ, Smith AP. Clarithromycin vs ciprofloxacin as adjuncts to rifampicin and ethambutol in treating opportunist mycobacterial lung diseases and an assessment of Mycobacterium vaccae immunotherapy. Thorax. 2008;63:627.

    Article  CAS  PubMed  Google Scholar 

  27. Kobashi Y, Matsushima T, Oka MA. Double-blind randomized study of aminoglycoside infusion with combined therapy for pulmonary Mycobacterium avium complex disease. Respir Med. 2007;101:130.

    Article  PubMed  Google Scholar 

  28. Wallace RJ Jr, Brown-Elliott BA, McNulty S, Philley JV, Killingley J, Wilson RW, et al. Macrolide/Azalide therapy for nodular/bronchiectatic mycobacterium avium complex lung disease. Chest. 2014;146:276.

  29. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367.

    Article  CAS  PubMed  Google Scholar 

  30. Adjemian J, Prevots DR, Gallagher J, Heap K, Gupta R, Griffith D. Lack of adherence to evidence-based treatment guidelines for nontuberculous mycobacterial lung disease. Ann Am Thorac Soc. 2014;11:9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tateishi Y, Hirayama Y, Ozeki Y, Nishiuchi Y, Yoshimura M, Kang J, et al. Virulence of Mycobacterium avium complex strains isolated from immunocompetent patients. Microb Pathog. 2009;46:6.

    Article  CAS  PubMed  Google Scholar 

  32. Stout JE, Hopkins GW, McDonald JR, Quinn A, Hamilton CD, Reller LB, et al. Association between 16S–23S internal transcribed spacer sequence groups of Mycobacterium avium complex and pulmonary disease. J Clin Microbiol. 2008; 46.

  33. Han XY, Tarrand JJ, Infante R, Jacobson KL, Truong M. Clinical significance and epidemiologic analyses of Mycobacterium avium and Mycobacterium intracellulare among patients without AIDS. J Clin Microbiol. 2005;43:4407.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kobashi Y, Abe M, Mouri K, Obase Y, Kato S, Oka M. Relationship between clinical efficacy for pulmonary MAC and drug-sensitivity test for isolated MAC in a recent 6-year period. J Infect Chemother. 2012;18:436.

    Article  CAS  PubMed  Google Scholar 

  35. Kobashi Y, Yoshida K, Miyashita N, Niki Y, Oka M. Relationship between clinical efficacy of treatment of pulmonary Mycobacterium avium Complex disease and drug-sensitivity testing of Mycobacterium avium Complex isolates. J Infect Chemother. 2006;12:195.

    Article  CAS  PubMed  Google Scholar 

  36. van Ingen J, Boeree MJ, van Soolingen D, Mouton JW. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat. 2012;15:149.

    Article  PubMed  Google Scholar 

  37. Wallace RJ Jr, Brown BA, Griffith DE, Girard WM, Murphy DT. Clarithromycin regimens for pulmonary Mycobacterium avium complex. The first 50 patients. Am J Respir Crit Care Med. 1996;153:1766.

  38. Tanaka E, Kimoto T, Tsuyuguchi K, Watanabe I, Matsumoto H, Niimi A, et al. Effect of clarithromycin regimen for Mycobacterium avium Complex pulmonary disease. Am J Respir Crit Care Med. 1999;160:866.

    Article  CAS  PubMed  Google Scholar 

  39. van Ingen J, Hoefsloot W, Mouton JW, Boeree MJ, van Soolingen D. Synergistic activity of rifampicin and ethambutol against slow-growing nontuberculous mycobacteria is currently of questionable clinical significance. Int J Antimicrob Agents. 2013;42:80.

    Article  PubMed  Google Scholar 

  40. Hoffner SE, Heurlin N, Petrini B, Svenson SB, Källenius G. Mycobacterium avium complex develop resistance to synergistically active drug combinations during infection. Eur Respir J. 1994;7:247.

    CAS  PubMed  Google Scholar 

  41. Brown-Elliott BA, Iakhiaeva E, Griffith DE, Woods GL, Stout JE, Wolfe CR, et al. vitro activity of amikacin against isolates of Mycobacterium avium complex with proposed MIC breakpoints and finding of a 16S rRNA gene mutation in treated isolates. J Clin Microbiol. 2013;51:3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Griffith DE, Brown BA, Murphy DT, Girard WM, Couch L, Wallace RJ Jr. Initial (6-month) results of three-times-weekly azithromycin in treatment regimens for Mycobacterium avium complex lung disease in human immunodeficiency virus-negative patients. J Infect Dis. 1998;178:121.

  43. Lam PK, Griffith DE, Aksamit TR, Ruoss SJ, Garay SM, Daley CL, et al. Factors related to response to intermittent treatment of Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2006;173:1283.

    Article  CAS  PubMed  Google Scholar 

  44. Griffith DE, Brown BA, Cegielski P, Murphy DT, Wallace RJ Jr. Early results (at 6 months) with intermittent clarithromycin-including regimens for lung disease due to Mycobacterium avium complex. Clin Infect Dis. 2000;30:288.

  45. ••van Ingen J, Ferro BE, Hoefsloot W, Boeree MJ, van Soolingen D. Drug treatment of pulmonary nontuberculous mycobacterial disease in HIV-negative patients: the evidence. Expert Rev Anti-Infect Ther. 2013;11:1065. A comprehensive review of drug treatment of nontuberculous mycobacterial lung disease by pioneering experts in the field.

  46. Olivier KN, Shaw PA, Glaser TS, Bhattacharyya D, Fleshner M, Brewer CC, et al. Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial disease. Ann Am Thorac Soc. 2014;11:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Davis KK, Kao PN, Jacobs SS, Ruoss SJ. Aerosolized amikacin for treatment of pulmonary Mycobacterium avium infections: an observational case series. BMC Pulm Med. 2007;7:2.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Safdar A. Aerosolized amikacin in patients with difficult-to-treat pulmonary nontuberculous mycobacteriosis. Eur J Clin Microbiol Infect Dis 2012; 31: 1883.

  49. Griffith DE, Brown-Elliott BA, Langsjoen B, Zhang Y, Pan X, Girard W, et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2006;174:928.

    Article  CAS  PubMed  Google Scholar 

  50. Ferro BE, Meletiadis J, Wattenberg M, de Jong A, van Soolingen D, Mouton JW, et al. Clofazimine prevents the regrowth of Mycobacterium abscessus and Mycobacterium avium type strains exposed to amikacin and clarithromycin. Antimicrob Agents Chemother. 2015;60:1097.

    Article  PubMed  Google Scholar 

  51. •Jarand J, Davis JP, Cowie RL, Field SK, Fisher DA. Long-term follow-up of Mycobacterium avium complex lung disease in patients treated with regimens including clofazimine and/or rifampin. Chest. 2016;149:1285. In 107 patients with Mycobacterium avium complex lung disease followed for at least 6 months after completion of treatment, patients who received a macrolide, ethambutol, and clofazamine had significantly greater sputum conversion than those that received macrolide, ethambutol, and rifampin although there was no difference in microbiologic relapse or re-treatment rates (occurring in about one-third) between the twotreatment groups. These findings lend credence to the increasing evidence that clofazamine should be considered in the regimen against nontuberculous mycobacteria (NTM). The study also suggests that a significant number of those with recurrent disease may in fact have a new NTM infection from the environment rather than a true relapse.

  52. van Ingen J, Totten SE, Helstrom NK, Heifets LB, Boeree MJ, Daley CL. In vitro synergy between clofazimine and amikacin in treatment of nontuberculous mycobacterial disease. Antimicrob Agents Chemother. 2012;56:6324.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Roussel G, Igual J. Clarithromycin with minocycline and clofazimine for Mycobacterium avium intracellulare complex lung disease in patients without the acquired immune deficiency syndrome. GETIM. Groupe d'Etude et de Traitement des Infections à Mycobactéries. Int J Tuberc Lung Dis. 1998;2:462.

    CAS  PubMed  Google Scholar 

  54. Winthrop KL, Ku JH, Marras TK, Griffith DE, Daley CL, Olivier KN, et al. The tolerability of linezolid in the treatment of nontuberculous mycobacterial disease. Eur Respir J. 2015;45:1177.

    Article  CAS  PubMed  Google Scholar 

  55. Philley JV, Wallace RJ Jr, Benwill JL, Taskar V, Brown-Elliott BA, Thakkar F, et al. Preliminary results of bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest. 2015;148:499.

  56. Koh WJ, Hong G, Kim SY, Jeong BH, Park HY, Jeon K, et al. Treatment of refractory Mycobacterium avium complex lung disease with a moxifloxacin-containing regimen. Antimicrob Agents Chemother. 2013;57:2281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bittner MJ, Horowitz EA, Safranek TJ, Preheim LC. Emergence of Mycobacterium kansasii as the leading mycobacterial pathogen isolated over a 20-year period at a midwestern Veterans Affairs hospital. Clin Infect Dis. 1996;22:1109.

    Article  CAS  PubMed  Google Scholar 

  58. Wang J, McIntosh F, Radomski N, Dewar K, Simeone R, Enninga J, et al. Insights on the emergence of Mycobacterium tuberculosis from the analysis of Mycobacterium kansasii. Genome Biol Evolution. 2015;7:856.

    Article  CAS  Google Scholar 

  59. Moon SM, Park HY, Jeon K, Kim S-Y, Chung MJ, Huh HJ, et al. Clinical significance of Mycobacterium kansasii isolates from respiratory specimens. PLoS One. 2015;10:e0139621.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Santin M, Dorca J, Alcaide F, Gonzalez L, Casas S, Lopez M, et al. Long-term relapses after 12-month treatment for Mycobacterium kansasii lung disease. Eur Respir J. 2009;33:148.

    Article  CAS  PubMed  Google Scholar 

  61. Woods GL, Brown-Elliott BA, Conville PS, Desmond EP, Hall GS, Lin G, et al. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomtcetes: Approved Standard. In: Institute CaLS, editor. CSLI document M24-A2, 2nd ed. Wayne, Pennsylvania; 2011.

  62. Shitrit D, Baum GL, Priess R, Lavy A, Shitrit AB, Raz M, et al. Pulmonary Mycobacterium kansasii infection in Israel, 1999-2004: clinical features, drug susceptibility, and outcome. Chest. 2006;129:771.

    Article  PubMed  Google Scholar 

  63. Griffith DE, Brown-Elliott BA, Wallace RJ Jr. Thrice-weekly clarithromycin-containing regimen for treatment of Mycobacterium kansasii lung disease: results of a preliminary study. Clin Infect Dis. 2003;37:1178.

  64. Kaustova J, Chmelik M, Ettlova D, Hudec V, Lazarova H, Richtrova S. Disease due to Mycobacterium kansasii in the Czech Republic: 1984-89. Tuber Lung Dis. 1995;76:205.

    Article  CAS  PubMed  Google Scholar 

  65. Mycobacterium kansasii pulmonary infection: a prospective study of the results of nine months of treatment with rifampicin and ethambutol. Research Committee, British Thoracic Society. Thorax. 1994; 49: 442.

  66. Ahn CH, Lowell JR, Ahn SS, Ahn SI, Hurst GA. Short-course chemotherapy for pulmonary disease caused by Mycobacterium kansasii. Am Rev Respir Dis. 1983;128:1048.

    CAS  PubMed  Google Scholar 

  67. Research Committee of the British Thoracic Society. Pulmonary disease caused by M. malmoense in HIV negative patients: 5-yr follow-up of patients receiving standardised treatment. Eur Respir J. 2003;21:478.

    Article  Google Scholar 

  68. Murray MP, Laurenson IF, Hill AT. Outcomes of a standardized triple-drug regimen for the treatment of nontuberculous mycobacterial pulmonary infection. Clin Infect Dis. 2008;47:222.

    Article  CAS  PubMed  Google Scholar 

  69. Hoefsloot W, van Ingen J, de Lange WC, Dekhuijzen PN, Boeree MJ, van Soolingen D. Clinical relevance of Mycobacterium malmoense isolation in The Netherlands. Eur Respir J. 2009;34:926.

    Article  CAS  PubMed  Google Scholar 

  70. Wayne LG, Sramek HA. Agents of newly recognized or infrequently encountered mycobacterial diseases. Clin Microbiol Rev. 1992;5:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van Ingen J, de Zwaan R, Dekhuijzen R, Boeree M, van Soolingen D. Region of difference 1 in nontuberculous mycobacterium species adds a phylogenetic and taxonomical character. J Bacteriol. 2009;191:5865.

    Article  PubMed  PubMed Central  Google Scholar 

  72. van Ingen J, Boeree MJ, de Lange WC, de Haas PE, Dekhuijzen PN, van Soolingen D. Clinical relevance of Mycobacterium szulgai in The Netherlands. Clin Infect Dis. 2008;46:1200.

    Article  PubMed  Google Scholar 

  73. van Ingen J, Boeree M, Janssen M, Ullmann E, de Lange W, de Haas P, et al. Pulmonary Mycobacterium szulgai infection and treatment in a patient receiving anti-tumor necrosis factor therapy. Nat Clin Pract Rheumatol. 2007;3:414.

    Article  PubMed  Google Scholar 

  74. Marks J, Schwabacher H. Infection due to Mycobacterium xenopi. Br Med J. 1965;1:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. •Hoefsloot W, van Ingen J, Andrejak C, Angeby K, Bauriaud R, Bemer P, et al. Nontuberculous Mycobacteria Network European Trials Group. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42:1604. This study tabulated the major NTM species isolated from respiratory samples and reported in 2008 to the NTM-Network European Trials Group. In data from over 20,000 patients from 30 countries across sixcontinents, Mycobacterium avium complex (MAC) organisms predominated in most countries. Importantly,there were significant differences among the different countries and continents in the geographical distribution of MAC species and other more common NTM.

  76. Martín-Casabona N, Bahrmand AR, Bennedsen J, Thomsen VO, Curcio M, Fauville-Dufaux M, et al. Spanish Group for Non-Tuberculosis Mycobacteria. Non-tuberculous mycobacteria: patterns of isolation. A multi-country retrospective survey. Int J Tuberc Lung Dis. 2004;8:1186.

    PubMed  Google Scholar 

  77. van Ingen J, Boeree MJ, de Lange WC, Hoefsloot W, Bendien SA, Magis-Escurra C, et al. Mycobacterium xenopi clinical relevance and determinants, the Netherlands. Emerg Infect Dis. 2008;14:385.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Andréjak C, Lescure FX, Pukenyte E, Douadi Y, Yazdanpanah Y, Laurans G, et al. Mycobacterium xenopi pulmonary infections: a multicentric retrospective study of 136 cases in north-east France. Thorax. 2009;64:291.

    Article  PubMed  Google Scholar 

  79. Banks J, Jenkins PA. Combined versus single antituberculosis drugs on the in vitro sensitivity patterns of non-tuberculous mycobacteria. Thorax. 1987;42:838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Watt B. In-vitro sensitivities and treatment of less common mycobacteria. J Antimicrob Chemother. 1997;39:567.

    Article  CAS  PubMed  Google Scholar 

  81. Ferro BE, van Ingen J, Wattenberg M, van Soolingen D, Mouton JW. Time-kill kinetics of slowly growing mycobacteria common in pulmonary disease. J Antimicrob Chemother. 2015;70:2838.

    Article  CAS  PubMed  Google Scholar 

  82. van Ingen J, van der Laan T, Dekhuijzen R, Boeree M, van Soolingen D. In vitro drug susceptibility of 2275 clinical non-tuberculous mycobacterium isolates of 49 species in The Netherlands. Int J Antimicrob Agents. 2010;35:169.

    Article  PubMed  Google Scholar 

  83. ••Andréjak C, Almeida DV, Tyagi S, Converse PJ, Ammerman NC, Grosset JH. Improving existing tools for Mycobacterium xenopi treatment: assessment of drug combinations and characterization of mouse models of infection and chemotherapy. J Antimicrob Chemother. 2013;68:659. Lung disease due to Mycobacterium xenopi is often recalcitrant to treatment. This comprehensive study examined potential drugs and combinations of drugs against this organism using in vitro (drugs against bugs), ex vivo (sera of treated mice to assess antimicrobial activities), and in vivo (murine) models. The investigators found that in vitro, 1) ethambutol plus either rifamycin or moxifloxacin and 2) clarithromycin plus moxifloxacin showed the best bactericidal activities; ex vivo, a three-drug combination of ethambutolplus a rifamycin and either clarithromycin or moxifloxacin was best. Interestingly, for the in vivo mouse studies, amikacin-containing regimen had the greatest bactericidal activity with no difference in regimens containing clarithromycin or moxifloxacin. This study is important because it provides a valuable foundation for future clinical trials in humans.

  84. Varadi RG, Marras TK. Pulmonary Mycobacterium xenopi infection in non-HIV-infected patients: a systematic review. Int J Tuberc Lung Dis. 2009;13:1210.

    CAS  PubMed  Google Scholar 

  85. Watt B, Rayner A, Harris G. Comparative activity of azithromycin against clinical isolates of mycobacteria. J Antimicrob Chemother. 1996;38:539.

    Article  CAS  PubMed  Google Scholar 

  86. van Ingen J, Boeree MJ, Dekhuijzen PN, van Soolingen D. Clinical relevance of Mycobacterium simiae in pulmonary samples. Eur Respir J. 2008;31:106.

    Article  PubMed  Google Scholar 

  87. Krasnow I, Gross W. Mycobacterium simiae infection in the United States. A case report and discussion of the organism. Am Rev Respir Dis. 1975;111:357.

    CAS  PubMed  Google Scholar 

  88. Boisvert H, Truffot C. Relationships between “Mycobacterium simiae” and the “M. avium-intracellulare-scrofulaceum” complex (author’s transl. Ann Microbiol (Paris). 1979;130B:457.

    CAS  Google Scholar 

  89. Bell RC, Higuchi JH, Donovan WN, Krasnow I, Johanson WG Jr. Mycobacterium simiae. Clinical features and follow-up of twenty-four patients. Am Rev Respir Dis. 1983;127:35.

  90. Valero G, Peters J, Jorgensen JH, Graybill JR. Clinical isolates of Mycobacterium simiae in San Antonio, Texas. An 11-yr review. Am J Respir Crit Care Med. 1995;152:1555.

    Article  CAS  PubMed  Google Scholar 

  91. Valero G, Moreno F, Graybill JR. Activities of clarithromycin, ofloxacin, and clarithromycin plus ethambutol against Mycobacterium simiae in murine model of disseminated infection. Antimicrob Agents Chemother. 1994;38:2676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jeong SH, Kim SY, Lee H, Ham JS, Hwang KB, Hwang S, et al. Nontuberculous mycobacterial lung disease caused by Mycobacterium simiae: the first reported case in South Korea. Tuberc Respir Dis (Seoul). 2015;78:432.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Philley JV, Griffith DE. Treatment of slowly growing mycobacteria. Clin Chest Med. 2015;36:79.

    Article  PubMed  Google Scholar 

  94. Koh WJ, Stout JE, Yew WW. Advances in the management of pulmonary disease due to Mycobacterium abscessus complex. Int J Tuberc Lung Dis. 2014;18:1141.

    Article  PubMed  Google Scholar 

  95. Pang H, Li G, Wan L, Jiang Y, Liu H, Zhao X, et al. In vitro drug susceptibility of 40 international reference rapidly growing mycobacteria to 20 antimicrobial agents. Int J Clin Exp Med. 2015;8:15423.

    PubMed  PubMed Central  Google Scholar 

  96. Broda A, Jebbari H, Beaton K, Mitchell S, Drobniewski F. Comparative drug resistance of Mycobacterium abscessus and M. chelonae isolates from patients with and without cystic fibrosis in the United Kingdom. J Clin Microbiol. 2013;51:217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Document M100-S11. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. Eleventh informational supplement. Document no. M100-S11. Wayne, PA: CLSI; 2001.

  98. Ryu YJ, Koh WJ, Daley CL. Diagnosis and treatment of nontuberculous mycobacterial lung disease: Clinicians’ perspectives. Tuberc Respir Dis (Seoul). 2016;79:74.

    Article  Google Scholar 

  99. Philley JV, Griffith DE. Management of nontuberculous mycobacterial (NTM) lung disease. Semin Respir Crit Care Med. 2013;34:135.

    Article  PubMed  Google Scholar 

  100. Jeon K, Kwon OJ, Lee NY, Kim BJ, Kook YH, Lee SH, et al. Antibiotic treatment of Mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am J Respir Crit Care Med. 2009;180:896.

    Article  CAS  PubMed  Google Scholar 

  101. Nash KA, Brown-Elliott BA, Wallace RJ Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother. 2009;53:1367.

  102. Choi GE, Shin SJ, Won CJ, Min KN, Oh T, Hahn MY, et al. Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care Med. 2012;186:917.

    Article  CAS  PubMed  Google Scholar 

  103. Maurer FP, Castelberg C, Quiblier C, Böttger EC, Somoskövi A. Erm(41)-dependent inducible resistance to azithromycin and clarithromycin in clinical isolates of Mycobacterium abscessus. J Antimicrob Chemother. 2014;69:1559.

    Article  CAS  PubMed  Google Scholar 

  104. ••Koh WJ, Jeon K, Lee NY, Kim BJ, Kook YH, Lee SH, et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med. 2011;183:405. This study sheds new light on why some patients with M. abscessus lung disease respond poorly to treatment whereas others do better. Previous work showed that with more robust speciation, M. abscessus organisms are comprised of at least three distinct species within the so-called M. abscessus complex: M.abscessus sensu stricto, M. bolletii, and M. massiliense. In patients infected with M. abscessus sensu stricto, response to treatment is significantly poorer than those with M. massiliense; this is likely due, in large part, to the presence of an inducible gene in M. abscessus sensu stricto that confers resistance to a macrolide in the presence, interestingly, of a macrolide.

  105. Kim HS, Lee KS, Koh WJ, Jeon K, Lee EJ, Kang H, et al. Serial CT findings of Mycobacterium massiliense pulmonary disease compared with Mycobacterium abscessus disease after treatment with antibiotic therapy. Radiology. 2012;263:260.

    Article  PubMed  Google Scholar 

  106. Lyu J, Kim BJ, Kim BJ, Song JW, Choi CM, Oh YM, et al. A shorter treatment duration may be sufficient for patients with Mycobacterium massiliense lung disease than with Mycobacterium abscessus lung disease. Respir Med. 2014;108:1706.

    Article  PubMed  Google Scholar 

  107. Wallace RJ Jr, Brown-Elliott BA, Ward SC, Crist CJ, Mann LB, Wilson RW. Activities of linezolid against rapidly growing mycobacteria. Antimicrob Agents Chemother. 2001;45:764.

  108. Jarand J, Levin A, Zhang L, Huitt G, Mitchell JD, Daley CL. Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clin Infect Dis. 2011;52:565.

    Article  PubMed  Google Scholar 

  109. Kasperbauer SH, De Groote MA. The treatment of rapidly growing mycobacterial infections. Clin Chest Med. 2015;36:67.

    Article  PubMed  Google Scholar 

  110. Mitchell JD. Surgical approach to pulmonary nontuberculous mycobacterial infections. Clin Chest Med. 2015;36:117.

    Article  PubMed  Google Scholar 

  111. Nelson KG, Griffith DE, Brown BA, Wallace RJ Jr. Results of operation in Mycobacterium avium-intracellulare lung disease. Ann Thorac Surg. 1998;66:325.

  112. Shiraishi Y, Nakajima Y, Takasuna K, Hanaoka T, Katsuragi N, Konno H. Surgery for Mycobacterium avium complex lung disease in the clarithromycin era. Eur J Cardiothorac Surg. 2002;21:314.

    Article  PubMed  Google Scholar 

  113. Yu JA, Pomerantz M, Bishop A, Weyant MJ, Mitchell JD. Lady Windermere revisited: treatment with thoracoscopic lobectomy/segmentectomy for right middle lobe and lingular bronchiectasis associated with non-tuberculous mycobacterial disease. Eur J Cardiothorac Surg. 2011;40:671.

    Article  PubMed  Google Scholar 

  114. Mitchell JD, Bishop A, Cafaro A, Weyant MJ, Pomerantz M. Anatomic lung resection for nontuberculous mycobacterial disease. Ann Thorac Surg. 2008;85:1887.

    Article  PubMed  Google Scholar 

  115. Watanabe M, Hasegawa N, Ishizaka A, Asakura K, Izumi Y, Eguchi K, et al. Early pulmonary resection for Mycobacterium avium complex lung disease treated with macrolides and quinolones. Ann Thorac Surg. 2006;81:2026.

    Article  PubMed  Google Scholar 

  116. Corpe RF. Surgical management of pulmonary disease due to Mycobacterium avium-intracellulare. Rev Infect Dis. 1981;3:1064.

    Article  CAS  PubMed  Google Scholar 

  117. Moran JF, Alexander LG, Staub EW, Young WG Jr, Sealy WC. Long-term results of pulmonary resection for atypical mycobacterial disease. Ann Thorac Surg. 1983;35:597.

  118. Shiraishi Y, Katsuragi N, Kita H, Hyogotani A, Saito MH, Shimoda K. Adjuvant surgical treatment of nontuberculous mycobacterial lung disease. Ann Thorac Surg. 2013;96:287.

    Article  PubMed  Google Scholar 

  119. Shiraishi Y, Nakajima Y, Katsuragi N, Kurai M, Takahashi N. Pneumonectomy for nontuberculous mycobacterial infections. Ann Thorac Surg. 2004;78:399.

    Article  PubMed  Google Scholar 

  120. Griffith DE, Girard WM, Wallace RJ Jr. Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 154 patients. Am Rev Respir Dis. 1993;147:1271.

  121. Andréjak C, Nielsen R, Thomsen VO, Duhaut P, Sørensen HT, Thomsen RW. Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis. Thorax. 2013;68:256.

    Article  PubMed  Google Scholar 

  122. Honda JR, Hess T, Malcolm KC, Ovrutsky AR, Bai X, Irani VR, et al. Pathogenic nontuberculous mycobacteria resist and inactivate cathelicidin: implication of a novel role for polar mycobacterial lipids. PLoS One. 2015;10:e0126994.

    Article  PubMed  PubMed Central  Google Scholar 

  123. van Ingen J, Egelund EF, Levin A, Totten SE, Boeree MJ, Mouton JW, et al. The pharmacokinetics and pharmacodynamics of pulmonary Mycobacterium avium complex disease treatment. Am J Respir Crit Care Med. 2012;186:559.

    Article  PubMed  Google Scholar 

  124. Ito Y, Hirai T, Fujita K, Kubo T, Maekawa K, Ichiyama S, et al. The influence of environmental exposure on the response to antimicrobial treatment in pulmonary Mycobacterial avium complex disease. BMC Infect Dis. 2014;14:522.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kikuchi T, Kobashi Y, Hirano T, Tode N, Santoso A, Tamada T, et al. Mycobacterium avium genotype is associated with the therapeutic response to lung infection. Clin Microbiol Infect. 2014;20:256.

    Article  CAS  PubMed  Google Scholar 

  126. Kim SY, Lee ST, Jeong BH, Park HY, Jeon K, Kim JW, et al. Genoty** of Mycobacterium intracellulare isolates and clinical characteristics of lung disease. Int J Tuberc Lung Dis. 2013;17:669.

    Article  PubMed  Google Scholar 

  127. Schulze-Röbbecke R, Buchholtz K. Heat susceptibility of aquatic mycobacteria. Appl Environ Microbiol 1992; 58: 1869.

  128. Falkinham JO 3rd. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis. 2011;17:419.

  129. Chan ED, Iseman, MD. Bronchiectasis. In: Broaddus C EJ, King TE, Lazarus SC, Mason R, Murray J, Nadel J, Slutsky AS (editors). Textbook of Respiratory Medicine, 6th ed. in press: Elsevier Press; 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward D. Chan MD.

Ethics declarations

Conflict of interest

Dr. Julie V. Philley, Dr. Jennifer R. Honda, Dr. Michael M. Chan, Dr. Shannon Kasperbauer, Dr. Nicholas D. Walter, and Dr. Edward D. Chan declare that they have no conflict of interest. Dr. Mary Ann DeGroote is a co-PI for the preclinical evaluation of new therapeutic entities for NTM therapeutics with Crestonepharma Inc. This is an SBIR phase II grant. There is no overlap with antimicrobial agents described in this review.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

The original version of this article was revised: The alignment of entries in Tables 5, 6, and 7, was incorrect. Table 5: Under the “Drug” column, it should be “± ciprofloxacin”, under “Dose and schedule” column, it should be “250-750 mg BID”, and under the “Known adverse effects” column, it should be “See moxifloxacin above” Table 6: “± Amikacin” should be moved to the right under the “Drug” column, “10-25 mg/kg IV or IM TIW for the first 2-3 months” should be moved under the “Dose and schedule” column, and “See above” should be moved under the “Known adverse effects” column. Table 7: The text for the last row is missing and is actually misplaced in the footnote: So for the last row, under the “Drug” column should be “±Trimethoprim-sulfamethoxazole”, under the “Dose and schedule” column should be “One double-strength tablet BID”, and under the “Known adverse effects” column should be “Hypersensitivity rash, myelosuppression, interstitial nephritis, increased liver function tests”

This article is part of the Topical Collection on Mycobacterial Infections

An erratum to this article is available at http://dx.doi.org/10.1007/s40506-016-0102-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philley, J.V., DeGroote, M.A., Honda, J.R. et al. Treatment of Non-Tuberculous Mycobacterial Lung Disease. Curr Treat Options Infect Dis 8, 275–296 (2016). https://doi.org/10.1007/s40506-016-0086-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-016-0086-4

Keywords

Navigation