Log in

Elevated CO2 enhances carbohydrate assimilation at flowering stage and seed yield in chickpea (Cicer arietinum)

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Rising atmospheric CO2 concentration can stimulate plant growth through enhanced photosynthesis and carbohydrate assimilation. A study was planned to analyse the effects of elevated CO2 (eCO2) (570 ± 45 µmol mol−1) on photosynthesis, carbohydrate assimilation and photorespiratory enzymes and their gene expression in desi (Pusa 1103) and kabuli (Pusa 1105) chickpea genotypes. The findings showed higher rate of photosynthesis in both desi and kabuli chickpea genotypes under elevated CO2 and was accompanied with increased starch and sugar concentration and rubisco activity. Expression of rbcS and rbcL genes was higher under elevated CO2 during flowering stage but non-significant changes occurred in expression at podding stage. Shoot biomass and seed yield was significantly higher in both chickpea genotypes under eCO2. Glycolate oxidase activity decreased under eCO2 and the reduction was greater in desi compared to kabuli genotype, suggesting suppressed photorespiration in both the chickpea genotypes. The finding of this study concludes that chickpea crop can perform better under eCO2 environment due to increased rate of photosynthesis and suppressed photorespiration. Between two types of chickpea, desi may respond better to eCO2 owing to its higher sink potential than kabuli types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ainsworth, E. A., Davey, P. A., & Bernacchi, C. J. (2002). A meta analysis of elevated (CO2) effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology, 8, 695–709.

    Article  Google Scholar 

  • Ainsworth, E. A., Leakey, A. D. B., Ort, D. R., & Long, S. P. (2008). FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply. New Phytologist, 179, 5–9.

    Article  CAS  PubMed  Google Scholar 

  • Aranjuelo, I., Cabrera-Bosquet, L., Morcuende, R., Avice, J. C., Nogués, S., Araus, J. L., et al. (2011). Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? Journal of Experimental Botany, 62, 3957–3969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranjuelo, I., Sanz-Sáez, Á., Jáuregui, I., Irigoyen, J. J., Araus, J. L., Sánchez-Díaz, M., & Erice, G. (2013). Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. Journal of Experimental Botany, 64, 1879–1892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt, R. K., Baig, M. J., & Tiwari, H. S. (2010). Elevated CO2 influences photosynthetic characteristics of Avena sativa L. cultivars. Journal of Environmental Biology, 31, 813–818.

    CAS  Google Scholar 

  • Biswas, D. K., Xu, H., Li, Y. G., Ma, B. L., & Jiang, G. M. (2013). Modification of photosynthesis and growth responses to elevated CO2 by ozone in two cultivars of winter wheat with different years of release. Journal of Experimental Botany, 64, 1485–1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booker, F. L., Reid, C. D., Harti-Brunschon, S., Fiscus, E. L., & Miller, J. E. (1997). Photosynthesis and photorespiration in soybean [Glycine max (L.) Merr.] chronically exposed to elevated carbon dioxide and ozone. Journal of Experimental Botany, 48, 1843–1852.

    Article  CAS  Google Scholar 

  • Chen, C., & Setter, T. L. (2012). Response of potato dry matter assimilation and partitioning to elevated CO2 at various stages of tuber initiation and growth. Environmental Experimental Botany, 80, 27–34.

    Article  CAS  Google Scholar 

  • Cheng, S. H., Moore, B., & Seemann, J. R. (1998). Effects of short- and long-term elevated CO2 on the expression of ribulose-1,5-bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heynh. Plant Physiology, 116, 715–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Food and Agricultural Organization of the United Nations. (2007). FAO Statistical Yearbook (Vol. 1 and 2). http://www.fao.org/statistics/yearbook/vol_1_1/index.asp

  • Ghildiyal, M. C., Rafique, S., & Sharma-Natu, P. (2001). Photosynthetic acclimation to elevated CO2 in relation to leaf saccharide constituents in wheat and sunflower. Photosynthetica, 39, 447–452.

    Article  CAS  Google Scholar 

  • Hao, X. Y., Han, X., Lam, S. K., Wheeler, T., Ju, H., Wang, H. R., et al. (2012). Effects of fully open-air [CO2] elevation on leaf ultrastructure, photosynthesis, and yield of two soybean cultivars. Photosynthetica, 50, 362–370.

    Article  CAS  Google Scholar 

  • Hodge, J. E., & Hofreiter, B. T. (1962). Analysis and preparation of sugars. In: Whistler, R.L., & Miller, J.N.B. (Eds.), Methods in carbohydrate chemistry (6th ed., pp. 356–378). New York: Academic Press.

    Google Scholar 

  • IPCC. (2014). Summary for Policymakers. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea & L. L. White (Eds.) Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the fifth assessment report of the intergovernmental panel on climate change (pp. 1–32). Cambridge: Cambridge University Press.

  • Jaggard, K. W., Qi, A., & Ober, E. S. (2010). Possible changes to arable crop yields by 2050. Philadelphia Transaction of Royal Society B, 365, 2835–2851.

    Article  Google Scholar 

  • Jiang, Yu-**, Cheng, F., Zhou, Yan-Hong, **ao-Jian, **a, Shi, K., & Yu, J. Q. (2012). Interactive effects of CO2 enrichment and brassinosteroid on CO2 assimilation and photosynthetic electron transport in Cucumis sativus. Environmental Experimental Botany, 75, 98–106.

    Article  CAS  Google Scholar 

  • Kant, S., Seneweera, S., Rodin, J., Materne, M., Burch, D., Rothstein, S. J., & Spangenberg, G. (2012). Improving yield potential in crops under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies. Frontiers in Plant Science, 3, 1–9.

    Article  Google Scholar 

  • Kumar, P., Rai, P., Chaturvedi, A. K., Khetarpal, S., & Pal, M. (2012). High atmospheric CO2 delays leaf senescence and crop maturity in chickpea (Cicer arietinum L.). Indian Journal of Plant Physiology, 17, 254–258.

    Google Scholar 

  • Locke, A. M., Sack, L., Bernacchi, C. J., & Ort, D. R. (2013). Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field. Annals of Botany, 112, 911–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long, S. P. (1994). The potential effects of concurrent increases in temperature, CO2 and O3 on net photosynthesis, as mediated by Rubisco. In R. G. Alscher & A. R. Wellburn (Eds.), Plant response to the gaseous environment (pp. 21–38). London: Chapman and Hall.

    Chapter  Google Scholar 

  • Moore, B. D., Cheng, S. H., Rice, J., & Seemann, J. R. (1998). Sucrose cycling, Rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environment, 21, 905–915.

    Article  CAS  Google Scholar 

  • Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. The Journal of Biological Chemistry, 153, 375–380.

    CAS  Google Scholar 

  • Ogren, W. L. (1984). Photorespiration: Pathways, regulation, and modification. Annual Review of Plant Biology, 35, 415–442.

    Article  CAS  Google Scholar 

  • Pal, M., Jagadish, S. V. K., Craufard, P. Q., Fitzgerald, M., Lafarge, T., & Wheeler, T. R. (2012). Effect of elevated CO2 and high temperature on seed set and grain quality of rice. Journal of Experimental Botany, 63, 3843–3852.

    Article  Google Scholar 

  • Pal, M., Pandian, V. K., Jain, V., Srivastava, A. C., Raj, A., & Sengupta, U. K. (2004). Biomass production and nutritional levels of berseem (Trifolium alexandrium) grown under elevated CO2. Agriculture, Ecosystem & Environment, 101, 31–38.

    Article  Google Scholar 

  • Pal, M., Talwar, S., Deshmukh, P. S., Vishwanathan, C., Khetarpal, S., Kumar, P., & Lutheria, D. (2008). Growth and yield of chickpea genotypes under elevated carbon dioxide concentration. Indian Journal of Plant Physiology, 13, 367–374.

    CAS  Google Scholar 

  • Pandurangam, V., Sharama-Natu, P., Sreekanth, B., & Ghildiyal, M. C. (2006). Photosynthetic acclimation to elevated CO2 in relation to Rubisco gene expression in three C3 species. Journal of Experimental Biology, 44, 408–415.

    CAS  Google Scholar 

  • Rogers, A., Ainsworth, E. A., & Leakey, A. D. B. (2009). Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiology, 151, 1009–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha, S., Chakraborty, D., Pal, M., & Nagrajan, S. (2011). Impact of elevated CO2 on utilization of soil moisture and associated soil biophysical parameters in pigeon pea (Cajanuscajan L.). Agriculture, Ecosystem & Environment, 142, 213–221.

    Article  Google Scholar 

  • Seneweera, S., Makino, A., Hirotsu, N., & Norton, S. Y. (2011). New insight into photosynthetic acclimation to elevated CO2: The role of leaf nitrogen and ribulose-1,5-bisphosphate carboxylase/oxygenase content in rice Leaves. Environmental Experimental Botany, 71, 128–136.

    Article  CAS  Google Scholar 

  • Servaites, J. C., & Torisky, R. S. (1984). Activation state of ribulose bisphosphate carboxylase in soybean leaves. Plant Physiology, 74, 681–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey, T. D. (1988). Estimating the rate of photorespiration in leaves. Physiologia Plantarum, 73, 147–152.

    Article  CAS  Google Scholar 

  • Somogyi, M. (1952). Notes on sugar determination. The Journal of Biological Chemistry, 195, 19–23.

    CAS  Google Scholar 

  • Tausz-Posch, S., Borowiak, K., Dempsey, R. W., Norton, R. M., Seneweera, S., Fitzgeral, G. J., & Tausz, M. (2013). The effect of elevated CO2 on photochemistry and antioxidative defence capacity in wheat depends on environmental growing conditions—A FACE study. Environmental Experimental Botany, 88, 81–92.

    Article  CAS  Google Scholar 

  • Wang, L., Pedas, P., Eriksson, D., & Schjoerring, J. K. (2013). Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants. Journal of Experimental Botany, 64, 2713–2724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, J. S., Reed, A., Chen, F., & Stewart Jr, C.N. (2006). Statistical analysis of real-time PCR data. BMC Bioinformatics, 7, 85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zelitch, I., Neil, P., Richard, B. S., Brown, P. P., & Brutnell, T. P. (2009). High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiology, 149, 195–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Indian Council of Agricultural Research (ICAR) for providing financial grant under National Initiative on Climate Resilient Agriculture (NICRA) project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashish K. Chaturvedi or Madan Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, P., Chaturvedi, A.K., Shah, D. et al. Elevated CO2 enhances carbohydrate assimilation at flowering stage and seed yield in chickpea (Cicer arietinum). Ind J Plant Physiol. 21, 114–121 (2016). https://doi.org/10.1007/s40502-016-0209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0209-4

Keywords

Navigation