Log in

Contrive Himalayan Soft Gold Cordyceps Species: a Lineage of Eumycota Bestowing Tremendous Pharmacological and Therapeutic Potential

  • Natural Products: From Chemistry to Pharmacology (C Ho, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In the present review, two strain improvement strategies viz. transformation system development and inter-specific protoplast fusion for this mushroom are hypothesized.

Recent Findings

The entomopathogenic medicinal mushroom Cordyceps species has been bestowing health biologically and pharmacologically for years. It harbors a variety of bio-metabolites having far-ranging activities. One of the constituents, cordycepin alone, is involved in a plethora of biochemical and molecular processes. With this interest, the bottlenecks such as excessive harvesting, commercial cultivation, low frequency of artificial stromata formation are still on pace. The genus Cordyceps has characteristic genomic expansion and studies such as identification of mating-type genes, metabolite-producing genes, and strain improvement techniques are in great demand.

Summary

In order to understand the present demand and current scenario regarding the genus Cordyceps, efforts have been made to elucidate the significance of its major bioactive constituent and underlying wide-spectrum applications. Furthermore, through this review, one may understand the situation and demand of mushroom in the present world. Furthermore, this article would certainly help to maneuver this fungus for develo** drugs against dreadful human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Deshmukh L, Kumar S, Aharwal RP, Rajak RC, Sandhu SS. Study on in-vitro antibacterial activity of mushroom collected from Jabalpur region. Int J Pharm Pharm Sci. 2014;6(9):143–6.

    Google Scholar 

  2. Hilszczanska D. Medicinal properties of macrofungi. Forest Res Pap. 2012;73:347–53.

    Google Scholar 

  3. Zhang JJ, Li Y, Zhou T, Xu DP, Zhang P, Li S, et al. Bioactivities and health benefits of mushrooms mainly from China. Molecules. 2016;21:938.

    PubMed Central  Google Scholar 

  4. Lee KH, Morris NSL, Yang X, et al. Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine. J Tradit Complement Med. 2012;2:84–95.

    PubMed  PubMed Central  Google Scholar 

  5. Ding C, Tian PX, Xue W, et al. Efficiency of Cordyceps sinensis in long term treatment of renal transplant patients. Front Biosci (Elite Ed). 2011;3:301–7.

    Google Scholar 

  6. Shrestha B, Sung JM. Notes on Cordyceps species collected from the central region of Nepal. Mycobiol. 2005;33:235–9.

    Google Scholar 

  7. • Wang L, Zhang WM, Hu B, Chen YQ, Qu LH. Genetic variation of Cordyceps militaris and its allies based on phylogenetic analysis of rDNA ITS sequence data. Fungal Divers. 2008;31:147–56 This article provides key information about genetic variation related with Cordyceps militaris and their possible allies.

    Google Scholar 

  8. Zhou X, Gong Z, Su Y, Lin J, Tang K. Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmcol. 2009;61:279–91.

    CAS  Google Scholar 

  9. Lee B, Park J, Shin HJ, et al. Cordyceps militaris improves neurite outgrowth in neuro 2A cells and reverses memory impairment in rats. Food Sci Biotechnol. 2011a;20:1599–608.

    CAS  Google Scholar 

  10. Lee JH, Hong SM, Yun JY, Myoung H, Kim MJ. Anti-cancer effects of cordycepin on oral squamous cell carcinoma proliferation and apoptosis in vitro. J Cancer Ther. 2011b;2:224–34.

    CAS  Google Scholar 

  11. Patel S, Goyal A. Recent developments in mushrooms as anticancer therapeutics: a review. 3Biotech. 2012;2:1–15.

    Google Scholar 

  12. Wang ZM, Peng X, Lee KLD, Tang JCO, Cheung PCK, Wu JY. Structural characterization and immunomodulatory property of an acidic polysaccharide from mycelia culture of Cordyceps sinensis fungus Cs-HK-1. Food Chem. 2011;125:637–43.

    CAS  Google Scholar 

  13. Yeu K, Ye M, Zhou Z, Sun W, Lin X. The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol. 2013;65:474–93.

    Google Scholar 

  14. Zhang XL, Cheng LB, Assaf SA, Phillips GO, Phillips AO. Cordyceps sinensis decreases TGF-b1 dependent epithelial to mesenchymal transdifferentiation and attenuates renal fibrosis. Food Hydrocoll. 2012;28:200–12.

    Google Scholar 

  15. Zhou X, Luo L, Dressel W, Shadier G, Krumbiegel D, Schmidtke P, et al. Cordycepin is an immunoregulatory active ingredient of Cordyceps sinensis. Am J Chin Med. 2008;36:967–80.

    CAS  PubMed  Google Scholar 

  16. Siu KM, Mak HFD, Chiu PY, Poon KTM, Du Y, Ko KM. Pharmacological basis of ‘Yin-nourishing’ and ‘Yang-invigorating’ actions of Cordyceps, a Chinese tonifying herb. Life Sci. 2004;76:385–95.

    CAS  PubMed  Google Scholar 

  17. Tulli HS, Sandhu SS, Sharma AK. Pharmacological and therapeutic potential of Cordyceps with special reference to cordycepin. 3. Biotech. 2014;4:1–12.

    Google Scholar 

  18. Shrestha B, Zhang W, Zhang Y, Liu X. The medicinal fungus Cordyceps militaris: research and development. Mycol Prog. 2012;11:599–614.

    Google Scholar 

  19. Patel KJ, Ingalhali RS. Cordyceps militaris (L. Fr.) link-an important medicinal mushroom. J Pharmacogn Phytochem. 2013;2:315–9.

    Google Scholar 

  20. Holliday J, Cleaver M, Wasser SP. Cordyceps. In: Coates PM, Blackman M, Blackman MR, Cragg GM, Levine M, White JD, Moss J, Levine MA, editors. Encyclopedia of dietary supplements, Dekker Encyclopedias. 2nd ed. London: Taylor and Francis publishing; 2005. p. 185.

    Google Scholar 

  21. Sharma S. Trade of Cordyceps sinensis from high altitudes of the Indian Himalaya: conservation and biotechnological priorities. Curr Sci. 2004;86:1614–9.

    Google Scholar 

  22. Huang LF, Liang YZ, Guo FQ, Zhou ZF, Cheng BM. Simultaneous separation and determination of active components in Cordyceps sinensis and Cordyceps militaris by LC/ESI-MS. J Pharm Biomed Anal. 2003;33:1155–62.

    CAS  PubMed  Google Scholar 

  23. Ling JY, Sun YJ, Zhang H, Zhang CK. Measurement of cordycepin and adenosine in stroma of Cordyceps sp. by capillary zone electrophoresis (CZE). J Biosci Bioeng. 2002;94:371–4.

    CAS  PubMed  Google Scholar 

  24. Ruma MW, Putranto EW, Kondo E, Watanabe R, Saito K, Inoue Y, et al. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells. Int J Oncol. 2014;45:209–18.

    CAS  PubMed  Google Scholar 

  25. Cao HL, Liu ZJ, Chang Z. Cordycepin induces apoptosis in human bladder cancer cells via activation of A3 adenosine receptors. Tumour Biol. 2017;39:01–6.

    Google Scholar 

  26. •• Deshmukh L, Singh R, Sandhu SS. Far ranging antimicrobial and free radical scavenging activity of Himalayan soft gold mushroom; Cordyceps sp. In: Sen R, Mukherjee S, Paul R, Narula R, editors. Biotechnology and biological sciences. London, UK: Taylor & Francis Group; 2019. p. 297–302. This article is recently published and reports the pharmaceutical importance of Cordyceps.

    Google Scholar 

  27. •• Deshmukh L, Agrawal D, Sandhu SS. Development of marker in the soft gold mushroom Cordyceps spp. for strain improvement. In: Kundu R, Narila R, editors. Advance in plant & microbial biotechnology. Singapore: Springer Nature; 2019. p. 33–9. This paper is recently published with Springer Nature publication and dealing with most appropriate selective markers used in strain improvement like HygR and URA3/5FOA.

    Google Scholar 

  28. Wong YY, Moon A, Duffin R, Barthet-Barateig, et al. Cordycepin inhibits protein synthesis and cell adhesion through effects on signal transduction. J Biol Chem. 2010;285:2610–21.

    CAS  PubMed  Google Scholar 

  29. • Shao LW, Huang LH, Yan S, ** JD, Ren SY. Cordycepin induces apoptosis in human liver cancer HepG2 cells through extrinsic and intrinsic signaling pathways. Oncol Lett. 2016;12:995–1000 This article reported the active signaling pathways and the active participation of cordycepin in apoptosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. GAO J, Lian Z-Q, Zhu P, Zhu H-B. Lipid-lowering effect of cordycepin (3′-deoxyadenosine) from Cordyceps militaris on hyperlipidemic hamsters and rats. Acta Pharm Sin. 2011;46(6):669–76.

    CAS  Google Scholar 

  31. Yung HC, Gi YK, Hye HL. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated raW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and nF-κB signaling pathways. Drug Design Dev Ther. 2014;8:1941–53.

    Google Scholar 

  32. Nakamura K, Konoha K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, et al. Effect of Cordycepin (3′-deoxyadenosine) on hematogenic lung metastatic model mice. In Vivo. 2005;19(1):137–41.

    CAS  PubMed  Google Scholar 

  33. Zhang DA-W, Hualiang D, WeiQi GYZ, Cao ZR. Osteoprotective effect of cordycepin on estrogen deficiency-induced osteoporosis in vitro and in vivo. Biomed Res Int. 2015;2015:01–6.

    Google Scholar 

  34. Liu Y, Wang J, Wang W, Zhang H, Zhang X, Han C. The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid Based Complement Alternat Med. 2015;2015:01–12.

    Google Scholar 

  35. •• Tuli HS, Sharma AK, Sandhu SS, Kashyap D. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci. 2013;93:863–9 This article presents the pharmaceutical importance of major compound responsible for broad-spectrum biological activity.

    CAS  PubMed  Google Scholar 

  36. **ao JH, Sun ZH, Zhang XJ, **ong Q. Efficient extraction and rapid quantitative determination of nucleoside compounds from Cordyceps jiangxiensis, a new Cordyceps producing cordycepin. Afr J Microbiol Res. 2014;8:75–84.

    Google Scholar 

  37. Seth R, Haider SZ, Mohan M. Pharmacology, phytochemistry and traditional uses of Cordyceps sinensis (Berk.) Sacc: a recent update for future prospects. Indian J Tradit Knowl. 2014;13:551–6.

    Google Scholar 

  38. Li SP, Zhao KJ, Ji ZN, Song ZH, Dong TTX, Lo CK, et al. A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury. Life Sci. 2003;73:2503–13.

    CAS  PubMed  Google Scholar 

  39. Holliday J, Cleaver M. Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) link (Ascomycetes). A review. Int JMed Mushrooms. 2008;10:219–34.

    CAS  Google Scholar 

  40. Matsuda H, Akaki J, Nakamura S, Okazaki Y, Kojima H, Tamesada M, et al. Apoptosis-inducing effects of sterols from the dried powder of cultured mycelium of Cordyceps sinensis. Chem Pharm Bull (Tokyo). 2009;57:411–4.

    CAS  Google Scholar 

  41. Yang ML, Kuo PC, Hwang TL, Wu TS. Antiinflammatory principles from Cordyceps sinensis. J Nat Prod. 2011;74:1996–2000.

    CAS  PubMed  Google Scholar 

  42. Liu Y, Xu F, Chen B, Zhang J, Yao S. CZE determination of nucleosides and nucleobases from natural Cordyceps sinensis and cultured Cordyceps militaris. Yaowu Fenxi Zazhi. 2010;30:24–9.

    Google Scholar 

  43. Yang FQ, Feng K, Zhao J, Li SP. Analysis of sterols and fatty acids in natural and cultured Cordyceps by one-step derivatization followed with gas chromatography-mass spectrometry. J Pharm Biomed Anal. 2009;49:1172–8.

    CAS  PubMed  Google Scholar 

  44. Zhu JS, Halpern GM, Jones K. The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis: part I. J Altern Complement Med. 1998;4:289–303.

    CAS  PubMed  Google Scholar 

  45. Colombo D, Ammirati E. Cyclosporine in transplantation-a history of converging timelines. J Biol Regul Homeost. 2015;25:493–504.

    Google Scholar 

  46. **e CY, Gu ZX, Fan GJ, Gu FR, Han YB, Chen ZG. Production of cordycepin and mycelia by submerged fermentation of Cordyceps militaris in mixture natural culture. Appl Biochem Biotechnol. 2009;158:483–92.

    CAS  PubMed  Google Scholar 

  47. Zheng QW, Wang YY, Gao SX. The study of Cordyceps militaris infecting the 5th instar silkworm. Edible Fungi. 2008;30:32–4.

    CAS  Google Scholar 

  48. Li TH, Lin QY, Song B, Huang H, Zhong YJ, Shen YH. The cultivation method of Cordyceps militaris fruiting body by infecting Tenebrio molitor pupae. China Patent 200510101348.0.

  49. Han RC, Liu XF, Cao L, Chen JH, 2006. The cultivation method of Cordyceps militaris fruiting body by infecting Gallerai mellifera larvae. 2005. China Patent 200610123355.5.

  50. Zheng Z, Huang C, Cao L, **e C, Han R. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol. 2011;115:265–74.

    CAS  PubMed  Google Scholar 

  51. Lu JM, Zeng ZJ, He HQ. Culture technique of Cordyceps militaris on artificial media. Guang dong Agric Sci. 2005;2005:88–9.

    Google Scholar 

  52. •• Zheng P, **a Y, Zhang S, Wang C. Genetics of Cordyceps and related fungi. Appl Microbiol Biotechnol. 2013;97:2797–804 This article provides elaborated information regarding genetics of Cordyceps that could be used as a milestone for the strain improvement.

    CAS  PubMed  Google Scholar 

  53. Yin Y, Yu G, Chen Y, et al. Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PLoS One. 2012;7(12):01–15.

    Google Scholar 

  54. Li YL, Yao YS, **e WD, Zhu JS. The molecular heterogeneity of natural Cordyceps sinensis with multiple OphioCordyceps sinensis fungi challenges the anamorph-teleomorph connection hypotheses. Am J Biomed Sci. 2016;8(12):123–59.

    Google Scholar 

  55. Wang L, Zhang WM, Hu B, Chen YQ, Qu LH. Genetic variation of Cordyceps militaris and its allies based on phylogenetic analysis of rDNA ITS sequence data. Fungal Divers. 2008;3:147–55.

    Google Scholar 

  56. Conlon BH, Mitchell J, de Beer ZW, Carøe C, Gilbert MTP, Eilenberg J, et al. Draft genome of the fungus-growing termite pathogenic fungus OphioCordyceps bispora (Ophiocordycipitaceae, Hypocreales, Ascomycota). Data Brief. 2017;11:537–42.

    PubMed  PubMed Central  Google Scholar 

  57. **ao G, Ying SH, Zheng P, et al. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep. 2012;483(2):01–10.

    Google Scholar 

  58. Gao Q, ** K, Ying SH, et al. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet. 2011;7(1):01–18.

    Google Scholar 

  59. **ang L, Li Y, Zhu Y, Luo H, Li C, Xu X, et al. Transcriptome analysis of the OphioCordyceps sinensis fruiting body reveals putative genes involved in fruiting body development and Cordycepin biosynthesis. Genomics. 2014;103(1):154–9.

    CAS  PubMed  Google Scholar 

  60. Li Y, Hu XD, Yang RH, et al. Complete mitochondrial genome of the medicinal fungus OphioCordyceps sinensis. Sci Rep. 2015;5:01–11.

    Google Scholar 

  61. Zhang S, Hao AJ, Zhao YX, Zhang XY, Zhang YJ. Comparative mitochondrial genomics toward exploring molecular markers in the medicinal fungus Cordyceps militaris. Sci Rep. 2017;7:01–9.

    Google Scholar 

  62. Rachmawati R, Kinoshita H, Nihira T. Establishment of transformation system in Cordyceps militaris by using integration vector with benomyl resistance gene. Procedia Environ Sci. 2013;17:142–9.

    CAS  Google Scholar 

  63. Soden DM, Callaghan JO, Dobson ADW. Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiol. 2002;148:4003–14.

    CAS  Google Scholar 

  64. • Sandhu SS, Rana IS, Rai MK. Strain improvement of Agaricus bisporus through Protoplast Fusion. Int J Med Mushrooms. 2007;9:349 This article tells about a very effective methodology that could be easily used in protoplast technology.

    Google Scholar 

  65. Pandey A, Mohanty PS, Arya P, Rathod D. Genetic diversity among the isolates of Cordyceps sinensis of higher Himalayan meadows of India. Int J Sci Nat. 2010;1:242–5.

    Google Scholar 

  66. Rosellini D. Selectable markers and reporter genes: a well-furnished toolbox for plant science and genetic engineering. Crit Rev Plant Sci. 2012;31:401–53.

    CAS  Google Scholar 

  67. Miki B, McHugh S. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol. 2004;107:193–232.

    CAS  PubMed  Google Scholar 

  68. Sundar IK, Sakthivel N. Advances in selectable marker genes for plant transformation. J Plant Physiol. 2008;165:1698–716.

    CAS  PubMed  Google Scholar 

  69. Wei G, Lei W, Hongqing W, Ling B, Weimin Z. Transformation system of Cordyceps cardinalis strain C033 mediated by Agrobacterium tumefaciens. Biotechnol Bull. 2013;1:149–54.

    Google Scholar 

  70. Kim JK, Park YJ, Kong WS, Kang HW. Highly efficient electroporation-mediated transformation into edible mushrooms Flammulina velutipes. Mycobiol. 2010;38:331–5.

    CAS  Google Scholar 

  71. DoAez BR. Strategies for the transformation of filamentous fungi. J Appl Microbiol. 2002;92:189–95.

    Google Scholar 

  72. Prabha VL, Punekar NS. Genetic transformation in Aspergilli: tool of the trade. Indian J Biochem Biophys. 2004;41:205–15.

    CAS  PubMed  Google Scholar 

  73. •• Sandhu SS, Kinghorn JR, Rajak RC, Unkles SE. Transformation system of Beauveria bassiana and Metarhizium anisopliae using nitrate reductase gene of Aspergillus nidulans. Indian J Exp Biol. 2001;39:650–3 This article provides very effective information regarding genetic selection marker (niaD) gene usable in transformation.

    CAS  PubMed  Google Scholar 

  74. Varavallo MA, Queiroz MV, Pereira JF, et al. Development of a transformation system for Penecillium brevicompactum based on the Fusarium oxysporum nitrate reductase gene. Braz J Microbiol. 2005;36:184–9.

    CAS  Google Scholar 

  75. Carrillo RR, Corona CM, Lara HL. Strain improvement of edible fungi with Pleurotus eryngii neohaplonts. Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products; 2011; Arcachon, France & INRA, France.

  76. Aswini L, Arunagirinathan N, Kavitha M. Strain improvement of Pleurotus species by protoplast fusion. Int J Advan Res Tech. 2014;3:32–8.

    Google Scholar 

  77. ** G, Yun Z, Zhu B. Protoplast fusion between Cordyceps sinensis and Cordyceps militaris. Biol Eng Food Sci. 2010;31:165.

    Google Scholar 

  78. Hashiba K. Sex differences in phenotypic manifestation and gene transmission in the Romano-Ward syndrome. Ann N Y Acad Sci. 1992;644:142–56.

    CAS  PubMed  Google Scholar 

  79. Parani IK, Eyini M. Strain improvement through protoplast fusion for enhanced coffee pulp degradation. Afri J Basic App Sci. 2010;2:37–41.

    Google Scholar 

  80. Rakhee SNK, Singh VK, et al. Phytochemical and proteomic analysis of a high altitude medicinal mushroom Cordyceps sinensis. J Protein Proteom. 2016;7:187–‘.

    CAS  Google Scholar 

  81. Arora RK. Cordyceps sinensis (berk.) sacc.-an entomophagous medicinal fungus-a review. Int J Adv Multidiscip Res. 2014;2:0161–70.

    Google Scholar 

  82. Gong Z, Su Y, Huang L, Lin J, Tang K, Zhou X. Cloning and analysis of glyceraldehydes-3-phosphate dehydrogenase gene from Cordyceps militaris. J Agric Res. 2009;4:402–8.

    Google Scholar 

  83. Hamburger M. Comment on comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J Agric Food. 2007;55:7213–4.

    CAS  Google Scholar 

  84. Dong CH, Yao YJ. In vitro evaluation of antioxidant activities of aqueous extracts from natural and cultured mycelia of Cordyceps sinensis. LWT Food Sci Technol. 2008;41:669–77.

    CAS  Google Scholar 

  85. Zhang Y, Zhang S, Li Y, Ma S, Wang C, **ang M, et al. Phylogeography and evolution of a fungal-insect association on the Tibetan Plateau. Mol Ecol. 2014;23:5337–55.

    PubMed  Google Scholar 

  86. Quan QM, Wang QX, Zhou XL, Li S, Yang XL, Zhu YG, et al. Comparative phylogenetic relationships and genetic structure of the caterpillar fungus OphioCordyceps sinensis and its host insects inferred from multiple gene sequences. J Microbiol. 2014;52:99–105.

    PubMed  Google Scholar 

  87. Bushley KE, Li Y, Wang WJ, Wang XL, Jiao L, Spatafora JW, et al. Isolation of the MAT1-1 mating type idiomorph and evidence for selfing in the Chinese medicinal fungus OphioCordyceps sinensis. Fungal Biol. 2013;117:599–610.

    CAS  PubMed  Google Scholar 

  88. Zhang S, Zhang YJ, Liu XZ, Wen HA, Wang M, Liu DS. Cloning and analysis of the MAT1-2-1 gene from the traditional Chinese medicinal fungus OphioCordyceps sinensis. Fungal Biol. 2011;115:708–14.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are obliged to Vice Chancellor, R.D. University Jabalpur and eternal gratefulness to Head, Department of Biological Science, R.D. University, Jabalpur, for completing this review. Authors are also thankful for the project Bio-Design Innovation Centre, Grant No.-F.No.17-14/2014P.N. I, M.H.R.D., New Delhi, India, for providing study platform.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anil K. Sharma or Sardul Singh Sandhu.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding submission and publication of this manuscript in Current Pharmacology Reports Journal.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Natural Products: From Chemistry to Pharmacology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, L., Sharma, A.K. & Sandhu, S.S. Contrive Himalayan Soft Gold Cordyceps Species: a Lineage of Eumycota Bestowing Tremendous Pharmacological and Therapeutic Potential. Curr Pharmacol Rep 6, 155–166 (2020). https://doi.org/10.1007/s40495-020-00223-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-020-00223-8

Keywords

Navigation