Log in

Abstract

A spacecraft is a vehicle designed for accomplishing a mission for military, scientific and commercial purposes. While designing a spacecraft, scientists face some challenges, one of which is the design of a thermal subsystem. A spacecraft is exposed to internal and external thermal loads during its lifetime. External heat loads are solar flux, Earth IR radiation, and albedo flux. The significance of these external loads varies depending on the orbit type. Internal loads are heat dissipation induced by the electrical and mechanical equipment. Thermal control systems must be developed carefully to keep spacecraft subsystems within operating temperatures until the end of their operating life. Thermal control can be performed with two methods: passive and active. This article mainly focuses on passive thermal control systems that have been designed and tested before. This type of thermal systems do not exert any power from a system, and they are more robust. Typical passive control hardware are thermal control coatings, multilayer insulation systems, radiators, louvers, thermal interface materials, and passive heat pipes. Here, we summarize some of the most recent developments in passive thermal protection system testing and design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Brown D. Charles (2007) Elements of spacecraft design

  2. Fortescue P, Swinerd G, Stark J (eds) (2011) Spacecraft systems engineering. Wiley, Hoboken

    Google Scholar 

  3. A. A. Aksu, H. Sundu, and E. Mermer, “Nonlinear system identification for the thermal management of communication satellites”, doi: https://doi.org/10.13009/EUCASS2019-910.

  4. DG Gilmore (2002) Spacecraft thermal control handbook. Aerospace Press

  5. Space engineering Space environment ECSS (2008) Secretariat ESA-ESTEC Requirements & Standards Division Noordwijk, The Netherlands

  6. RE Smith and GS West (1983) Space and planetary environment criteria guidelines for use in space vehicle development, 1982 Vol 1

  7. Tribble AC (1997) The space environment: implications for spacecraft design. Bull Sci Technol Soc 17(4):208–208. https://doi.org/10.1177/027046769701700430

    Article  Google Scholar 

  8. Sundu H, Döner N (2020) Detailed thermal design and control of an observation satellite in low earth orbit. Eur Mech Sci 4(4):171–178. https://doi.org/10.26701/ems.730201

    Article  Google Scholar 

  9. Larson WJ, & Wertz JR (1999). Space mission analysis and design: Vol 8, Space Technology Library (3rd ed.)

  10. Kiomarsipour N, Shoja Razavi R, Ghani K (2013) Improvement of spacecraft white thermal control coatings using the new synthesized Zn-MCM-41 pigment. Dyes Pigments 96(2):403–406. https://doi.org/10.1016/j.dyepig.2012.08.019

    Article  Google Scholar 

  11. Marshall KN, Breuch RA (1968) Optical solar reflector: A highly stable, low alpha sub S/epsilon spacecraft thermal control surface. J Spacecr Rocket 5(9):1051–1056. https://doi.org/10.2514/3.29420

    Article  Google Scholar 

  12. Frank P (2018) Incropera David P, 8th edn. DeWitt Theodore L. Bergman, Fundamentals of Heat and Mass Transfer

    Google Scholar 

  13. JR Howell MP Menguc R Siegel 2015 Thermal Radiation Heat Transfer CRC Press, doi: https://doi.org/10.1201/b18835

  14. L. Kauder (2005) “Spacecraft thermal control coatings references.” Available: http://www.sti.nasa.gov/STI-homepage.html

  15. JH Henninger (1984) NASA reference publication 1121 Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings

  16. Uma Rani R, Sharma AK, Minu C, Poornima G, Tejaswi S (2010) Studies on black electroless nickel coatings on titanium alloys for spacecraft thermal control applications. J Appl Electrochem 40(2):333–339. https://doi.org/10.1007/s10800-009-9980-5

    Article  Google Scholar 

  17. Ku J (1999) Operating characteristics of loop heat pipes. J Aerosp 108:503–519

    Google Scholar 

  18. Heydari V, Bahreini Z (1998) Synthesis of silica-supported ZnO pigments for thermal control coatings and analysis of their reflection model. J Coat Technol Res. https://doi.org/10.1007/s11998-017-9969-7

    Article  Google Scholar 

  19. Kulshreshtha A (1970) UV irradiation effect on the electrical properties of ZnO thermal control coating pigment. IEEE Trans Aerosp Electron Syst 6(4):468–472. https://doi.org/10.1109/TAES.1970.310127

    Article  Google Scholar 

  20. J Johnson C Cerbus A Haines M Kenny2005Review of improved thermal control coating development for NASA’s SEE Programhttps://doi.org/10.2514/6.2005-1378

  21. Johnson JA, Heidenreich JJ, Mantz RA, Baker PM, Donley MS (2003) A multiple-scattering model analysis of zinc oxide pigment for spacecraft thermal control coatings. Prog Org Coat 47(3–4):432–442. https://doi.org/10.1016/S0300-9440(03)00133-4

    Article  Google Scholar 

  22. Jaworske DA (1996) Optical and calorimetric evaluation of Z-93-P and other thermal control coatings. Thin Solid Films 290–291:278–282. https://doi.org/10.1016/S0040-6090(96)08969-9

    Article  Google Scholar 

  23. Jaworske DA (1998) Correlation of predicted and observed optical properties of multilayer thermal control coatings. Thin Solid Films 332(1–2):30–33

    Article  Google Scholar 

  24. Hendaoui A, Émond N, Dorval S, Chaker M, Haddad E (2013) VO2-based smart coatings with improved emittance-switching properties for an energy-efficient near room-temperature thermal control of spacecrafts. Sol Energy Mater Sol Cells 117:494–498. https://doi.org/10.1016/j.solmat.2013.07.023

    Article  Google Scholar 

  25. Mikhailov MM, Yuryev SA, Lapin AN (2019) Prospects for applying BaSO4 powders as pigments for spacecraft thermal control coatings. Acta Astronaut 165:191–194. https://doi.org/10.1016/j.actaastro.2019.09.009

    Article  Google Scholar 

  26. Hadi AG et al (2013) Study the effect of barium sulphate on optical properties of polyvinyl alcohol (PVA). Univ J Mater Sci 1(2):52–55. https://doi.org/10.13189/ujms.2013.010207

    Article  Google Scholar 

  27. Xu D, Zhao J, Liu L (2021) Near-field radiation assisted smart skin for spacecraft thermal control. Int J Therm Sci 165:106934

    Article  Google Scholar 

  28. Mikhailov MM, Sokolovskii AN (2006) Photostability of coatings based on TiO2 (Rutile) doped with potassium peroxoborate. J Spacecr Rocket 43(2):451–455. https://doi.org/10.2514/1.14363

    Article  Google Scholar 

  29. Mikhailov MM, Yuryev SA, Remnev GE, Sazonov RV, Vlasov VA, Kholodnaya GE (2017) The study of processes affecting the radiation resistance of TiO2 powders after heating and modification with SiO2 nanoparticles. J Therm Anal Calorim 130(2):671–680. https://doi.org/10.1007/s10973-017-6407-0

    Article  Google Scholar 

  30. Mikhailov MM, Neshchimenko VV, Sokolovskiy AN, Yurina VY (2019) Thermal control coatings based on pigments modified with Al2O3 nanoparticles. Prog Org Coat 131:340–345. https://doi.org/10.1016/J.PORGCOAT.2019.03.001

    Article  Google Scholar 

  31. Gu M, Zhou J, Ren X, Liao S (2019) Theoretical investigation on spectral emissivity of thermal control coatings with optical-rough surface. Optik 181:44–49. https://doi.org/10.1016/j.ijleo.2018.12.017

    Article  Google Scholar 

  32. R Karam (1998) Satellite thermal control for systems engineers. In: Reston,VA: American institute of aeronautics and astronautics, doi: https://doi.org/10.2514/4.866524.

  33. Liu T, Sun Q, Meng J, Pan Z, Tang Y (2016) Degradation modeling of satellite thermal control coatings in a low earth orbit environment. Sol Energy 139:467–474. https://doi.org/10.1016/j.solener.2016.10.031

    Article  Google Scholar 

  34. Soltani M, Chaker M, Haddad E, Kruzelesky RV (2006) Thermochromic vanadium dioxide smart coatings grown on Kapton substrates by reactive pulsed laser deposition. J Vac Sci Technol A: Vac, Surf Films 24(3):612–617. https://doi.org/10.1116/1.2186661

    Article  Google Scholar 

  35. Athanasopoulos N, Farmasonis J, Siakavellas N (2019) Preliminary design and comparative study of thermal control in a nanosatellite through smart variable emissivity surfaces. Proc Inst Mech Eng, Part G: J Aerosp Eng 233(9):3336–3350. https://doi.org/10.1177/0954410018795809

    Article  Google Scholar 

  36. Youngquist RC, Nurge MA, Johnson WL, Gibson TL, Surma JM (2018) Cryogenic deep space thermal control coating. J Spacecr Rockets 55(3):622–631. https://doi.org/10.2514/1.A34019

    Article  Google Scholar 

  37. Shukla KN (2015) Heat pipe for aerospace applications: an overview. J Electron Cooling Therm Control 05(01):1–14. https://doi.org/10.4236/jectc.2015.51001

    Article  Google Scholar 

  38. Li T, Kang H, Lu S, Qin W, Wu X (2022) Preparation of antistatic AZO/Al2O3–ZnO–Y2O3 composite thermal control coating and its study on electron-resistance radiation performance. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 518:1–6. https://doi.org/10.1016/j.nimb.2022.03.004

    Article  Google Scholar 

  39. Madhuri D, Ghosh R, Hasan MA, Dey A, Pillai AM, Angamuthu M, Anantharaju KS, Rajendra A (2022) Flat absorber black PEO coatings on Ti6Al4V for spacecraft thermal control application. Ceram Int 48(23):35906–35914. https://doi.org/10.1016/j.ceramint.2022.09.335

    Article  Google Scholar 

  40. Kiomarsipour N, Ghasemi M, Ghani K (2019) Synthesis and evaluation of several high absorbance black pigments for spacecraft thermal control coatings. Color Res Appl 44(6):917–924. https://doi.org/10.1002/col.22418

    Article  Google Scholar 

  41. PM Sutheesh A Chollackal (2018) Thermal performance of multilayer insulation: a review. In: IOP conference series: materials science and engineering, vol 396, p 012061

  42. I. P.-G. A. S.-A. J Meseguer, (2012) Spacecraft thermal control (1st Ed.), Aug 6, 2012

  43. MM Finckenor (1999) Multilayer insulation material guidelines

  44. Haim Y, Weiss Y, Letan R (2014) Effect of spacers on the thermal performance of an annular multi-layer insulation. Appl Therm Eng 65(1–2):418–421. https://doi.org/10.1016/J.APPLTHERMALENG.2014.01.041

    Article  Google Scholar 

  45. Miyakita T, Hatakenaka R, Sugita H, Saitoh M, Hirai T (2014) Development of a new multi-layer insulation blanket with non-interlayer-contact spacer for space cryogenic mission. Cryogenics 64:112–120. https://doi.org/10.1016/j.cryogenics.2014.04.008

    Article  Google Scholar 

  46. C Rozé, C Duvignacq, C Tonon, and T Girasole, (2017) Multilayer four-flux model for the optical degradation of thermal control coatings in space, In International conference on space optics: ICSO 2000, p. 69

  47. Li P, Cheng H (2006) Thermal analysis and performance study for multilayer perforated insulation material used in space. Appl Therm Eng 26(16):2020–2026. https://doi.org/10.1016/j.applthermaleng.2006.01.004

    Article  Google Scholar 

  48. “‘MLI’ [Online]. Available: https://www.ralspace.stfc.ac.uk/Gallery/Multi-layer%20insulation.JPG.”

  49. Wei W, Li X, Wang R, Li Y (2009) Effects of structure and shape on thermal performance of perforated multi-layer insulation blankets. Appl Therm Eng 29(5–6):1264–1266. https://doi.org/10.1016/j.applthermaleng.2008.06.024

    Article  Google Scholar 

  50. Shu QS, Fast RW, Hart HL (1986) Heat flux from 277 to 77 K through a few layers of multilayer insulation. Cryogenics 26(12):671–677. https://doi.org/10.1016/0011-2275(86)90167-0

    Article  Google Scholar 

  51. Smith CH, Mckinley IM, Ramsey PG, Rodriguez JI (2016) Performance of multi-layer insulation for spacecraft instruments at cryogenic temperatures

  52. Krishnaprakas CK, Badari Narayana K, Dutta P (2000) Heat transfer correlations for multilayer insulation systems. Cryogenics 40(7):431–435. https://doi.org/10.1016/S0011-2275(00)00048-5

    Article  Google Scholar 

  53. Dye SA, Tyler PN, Mills GL, Kopelove AB (2014) Wrapped multilayer insulation design and testing. Cryogenics 64:100–104. https://doi.org/10.1016/J.CRYOGENICS.2014.07.002

    Article  Google Scholar 

  54. Fesmire JE (2016) Layered composite thermal insulation system for nonvacuum cryogenic applications. Cryogenics 74:154–165. https://doi.org/10.1016/J.CRYOGENICS.2015.10.008

    Article  Google Scholar 

  55. Liu Z, Li Y, **e F, Zhou K (2016) Thermal performance of foam/MLI for cryogenic liquid hydrogen tank during the ascent and on orbit period. Appl Therm Eng 98:430–439. https://doi.org/10.1016/J.APPLTHERMALENG.2015.12.084

    Article  Google Scholar 

  56. Johnson WL, van Dresar NT, Chato DJ, Demers JR (2017) Transmissivity testing of multilayer insulation at cryogenic temperatures. Cryogenics 86:70–79. https://doi.org/10.1016/J.CRYOGENICS.2017.07.002

    Article  Google Scholar 

  57. Bapat SL, Narayankhedkar KG, Lukose TP (1990) Performance prediction of multilayer insulation. Cryogenics 30(8):700–710. https://doi.org/10.1016/0011-2275(90)90234-4

    Article  Google Scholar 

  58. Spacecraft designed by ESA’ [Online]. Available: https://artes.esa.int/projects/alternative-bonding-method-thermal-insulation-multi-layer-foil.”

  59. Bhandari P, Ochoa H, Schmidt T, & Duran M (2018). A dual multilayer insulation blanket concept to radically reduce heat loss from thermally controlled spacecraft and instruments.In: 48th international conference on environmental systems

  60. Wang Z, Fu H, and Fan Z (2019). Research on the production mode of improving production efficiency of spacecraft multi-layer insulation. In 2019 2nd international conference on sustainable energy, environment and information engineering (SEEIE 2019)

  61. Cui W, Sun Z, Yang J (2020) The temperature model of the thermal re-radiation model in multilayer insulation systems. Open Astron 29(1):32–39. https://doi.org/10.1515/astro-2020-0002

    Article  Google Scholar 

  62. Wang X, Cao Y, Zhang Y, Yan L, Li Y (2015) Fabrication of VO2-based multilayer structure with variable emittance. Appl Surf Sci 344:230–235. https://doi.org/10.1016/j.apsusc.2015.03.116

    Article  Google Scholar 

  63. Thurman JL (1969) Optimization of steady-state thermal design of space radiators. J Spacecr Rocket 6(10):1114–1119. https://doi.org/10.2514/3.29773

    Article  Google Scholar 

  64. Katti VR, Pratap VR, Dave RK, and Mankad KN (2006). INSAT-3D: an advanced meteorological mission over Indian Ocean. In GEOSS and next-generation sensors and missions, Vol 6407, pp 42-53

  65. Juhasz A (1994) Review of advanced radiator technologies for spacecraft power systems and space thermal control, [Online]. Available: https://www.researchgate.net/publication/24301713

  66. Biter W (2004) Electrostatic radiator for spacecraft temperature control, In AIP conference proceedings, pp. 96–102

  67. Boato MG, Garcia EC, dos Santos MB, Beloto AF (2017) Assembly and testing of a thermal control component developed in Brazil. J Aerosp Technol Manag 9(2):249–256. https://doi.org/10.5028/jatm.v9i2.650

    Article  Google Scholar 

  68. Voti RL, Larciprete MC, Leahu G, Sibilia C, Bertolotti M (2012) Optimization of thermochromic VO2 based structures with tunable thermal emissivity. J Appl Phys 112(3):034305. https://doi.org/10.1063/1.4739489

    Article  Google Scholar 

  69. Jiang X, Soltani M, Haddad E, Kruzelecky R, Nikanpour D, Chaker M (2006) Effects of atomic oxygen on the thermochromic characteristics of VO2 coating. J Spacecr Rocket 43(3):497–500. https://doi.org/10.2514/1.16456

    Article  Google Scholar 

  70. Lang F, Wang H, Zhang S, Liu J, Yan H (2018) Review on variable emissivity materials and devices based on smart chromism. Int J Thermophys 39(1):6. https://doi.org/10.1007/s10765-017-2329-0

    Article  Google Scholar 

  71. Benkahoul M et al (2011) Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications. Sol Energy Mater Sol Cells 95(12):3504–3508. https://doi.org/10.1016/J.SOLMAT.2011.08.014

    Article  Google Scholar 

  72. E Haddad et al. “Tuneable emittance thin film coatings for thermal control.”

  73. Nagano H, Nagasaka Y, Ohnishi A (2006) Simple deployable radiator with autonomous thermal control function. J Thermophys Heat Transfer 20(4):856–864. https://doi.org/10.2514/1.17988

    Article  Google Scholar 

  74. Kim H, Cheung K, Auyeung RC, Wilson DE, Charipar KM, Piqué A, Charipar NA (2019) VO2-based switchable radiator for spacecraft thermal control. Sci Rep 9(1):1–8. https://doi.org/10.1038/s41598-019-47572-z

    Article  Google Scholar 

  75. Kuhn JL, Benner SM, Butler CD, Silk EA (1999) Thermal and mechanical performance of a carbon-carbon composite spacecraft radiator. Optomech Eng Vib Control 3786:162–178. https://doi.org/10.1117/12.363792

    Article  Google Scholar 

  76. Vaughn W, Shinn E, Patterson W, Rawal S, and J. Wright (2004) Carbon-carbon composite radiator development for the EO-1 spacecraft

  77. Maahs HG and Vaughn WL (1994) “N94–30481 Four Advances carbon-carbon materials technology

  78. Bertagne C, Walgren P, Erickson L, Sheth R, Whitcomb J, Hartl D (2018) Coupled behavior of shape memory alloy-based morphing spacecraft radiators: Experimental assessment and analysis. Smart Mater Struct. https://doi.org/10.1088/1361-665X/aabbe8

    Article  Google Scholar 

  79. Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 1980–2015(56):1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084

    Article  Google Scholar 

  80. Wanhill RJH, Ashok B (2017) Shape memory alloys (SMAs) for aerospace applications. Aerosp Mater 1:467–481. https://doi.org/10.1007/978-981-10-2134-3_21

    Article  Google Scholar 

  81. Walgren P et al (2018) Development and testing of a shape memory alloy-driven composite morphing radiator. Shape Mem Superelast 4(1):232–241. https://doi.org/10.1007/s40830-018-0147-2

    Article  Google Scholar 

  82. Stephan RA (2009) Overview of NASA’s thermal control system development for exploration project, In: 40th international conference on environmental systems, doi: https://doi.org/10.4271/2009-01-2436

  83. Ganapathi GB, Sunada ET, Birur GC, Miller JR, Stephan R (2009) Design description and initial characterization testing of an active heat rejection radiator with digital turn-down capability. SAE Int J Aerosp 4(1):272–278. https://doi.org/10.4271/2009-01-2419

    Article  Google Scholar 

  84. Kim HK, Choi S, Park SO, Lee KH (2015) Node-based spacecraft radiator design optimization. Adv Space Res 55(5):1445–1469. https://doi.org/10.1016/j.asr.2014.09.007

    Article  Google Scholar 

  85. Groot T, Schwieters B, Benthem R, Es J, Pauw A (2019) Breadboard testing af a hiper inftable radiator (Hiper INFRA). In: 49th International conference on environmental systems

  86. Li Z, Zhang H, Huang Z, Zhang D, Wang H (2022) Characteristics and optimation of heat pipe radiator for space nuclear propulsion spacecraft. Prog Nucl Energy 150:104307. https://doi.org/10.1016/j.pnucene.2022.104307

    Article  Google Scholar 

  87. Shimakawa Y et al (2002) A variable-emittance radiator based on a metal–insulator transition of (La, Sr)MnO3 thin films. Appl Phys Lett 80(25):4864–4866. https://doi.org/10.1063/1.1489079

    Article  Google Scholar 

  88. Brand O and Schlitt R (1997) Low-temperature radiator design for the ABRIXAS X-ray satellite, Available: https://www.researchgate.net/publication/234410858

  89. M. K. Choi (2004) AZW-LA-II white paint on Swift: Lessons learned from first time flying on spacecraft radiators, In Collection of technical papers - 2nd international energy conversion engineering conference, vol 2, pp 1370–1376

  90. Evans AL (2019) SSC19-P4–23 2019, Design and testing of the cubesat form factor thermal control louvers

  91. Passive thermal louver Available: https://www.nasa.gov/smallsat-institute/sst-soa-2020/thermal-control.”

  92. Furukawa M (1979) Analytical studies on design optimization of movable louvers for space use. J Spacecr Rocket 16(6):412–425. https://doi.org/10.2514/3.28018

    Article  Google Scholar 

  93. Michalek T, Stipandic E, and Coyle M (1972) “Analytical and experimental studies of an all specular thermal control louver system in a solar vacuum environment. doi: https://doi.org/10.2514/6.1972-268.

  94. Parmer J (1968) “Thermal control characteristics of a diffuse bladed, specular base louver system, doi: https://doi.org/10.2514/6.1968-764.

  95. Buskirk D and Parmer J (1967) “The thermal radiation characteristics of spacecraft temperature control louvers in the solar space environment doi: https://doi.org/10.2514/6.1967-307.

  96. Ollendorf S (1965) “Analytical determination of the effective emittance of an insulated louver system, doi: https://doi.org/10.2514/6.1965-425.

  97. Plamondon JA (1964) Analysis of movable louvers for temperature control. J Spacecr Rocket 1(5):492–497. https://doi.org/10.2514/3.27686

    Article  Google Scholar 

  98. Schmidt RR, Cruz EE, Iyengar M (2005) Challenges of data center thermal management”. IBM J Res Dev 49(4.5):709–723. https://doi.org/10.1147/rd.494.0709

    Article  Google Scholar 

  99. Douglas D, Michalek T, and Swanson T (2001) Design of the thermal control system for the space technology 5 microsatellite, doi: https://doi.org/10.4271/2001-01-2214.

  100. Gluck DF, Corrigan ME, and Mobility A (1994) “Thermal control of spacecraft mountings and interfaces: a review

  101. Shaikh S, Lafdi K, Silverman E (2007) The effect of a CNT interface on the thermal resistance of contacting surfaces. Carbon 45(4):695–703. https://doi.org/10.1016/j.carbon.2006.12.007

    Article  Google Scholar 

  102. Zhang H, Li G, Chen L, Man G, Miao J, Ren X, He J, Huo Y (2019) Development of flat-plate loop heat pipes for spacecraft thermal control. Microgravity Sci Technol 31:435–443. https://doi.org/10.1007/s12217-019-09716-8

    Article  Google Scholar 

  103. Chung SH, Kim H, Jeong SW (2018) Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment. Carbon 140:24–29. https://doi.org/10.1016/j.carbon.2018.08.029

    Article  Google Scholar 

  104. Wu X, Wang H, Wang Z, Xu J, Wu Y, Xue R, Cui H, Tian C, Wang Y, Huang X, Zhong B (2021) Highly conductive thermal interface materials with vertically aligned graphite-nanoplatelet filler towards: High power density electronic device cooling. Carbon 182:445–453. https://doi.org/10.1016/j.carbon.2021.06.048

    Article  Google Scholar 

  105. Wu Q, Li W, Liu C, Xu Y, Li G, Zhang H, Huang J, Miao J (2022) Carbon fiber reinforced elastomeric thermal interface materials for spacecraft. Carbon 187:432–438. https://doi.org/10.1016/j.carbon.2021.11.039

    Article  Google Scholar 

  106. Guo T, Wang D, Guo Z, Fan X, Zhang Z. (2020) Research on coating method of thermal conduction silicone grease for spacecraft equipment based on stencil printing, doi:https://doi.org/10.1088/1742-6596/1633/1/012027

  107. Mermer E, Mihcak B, Okan A, and Kavas I, “Thermal management of payload data processing and storage unit, In: proceedings of the 4th international forum on heat transfer, IFHT2016, 2016.

  108. Welch J and Ruttner L (1989) An experimental and computational analysis of the thermal interface filler material Calgraph, doi: https://doi.org/10.2514/6.1989-1658.

  109. Lambert MA, Fletcher LS (1997) Review of models for thermal contact conductance of metals. J Thermophys Heat Transfer 11(2):129–140. https://doi.org/10.2514/2.6221

    Article  Google Scholar 

  110. Kugler SL (2008) Aluminum encapsulated apg high conductivity thermal doubler

  111. Highest performance thermal straps for all applications, https://thermal-space.com/thermal-straps/.”

  112. Tauber JA et al (2010) Planck pre-launch status: the Planck mission. Astron Astrophys 520:A1. https://doi.org/10.1051/0004-6361/200912983

    Article  Google Scholar 

  113. Donabedian M (2004) Spacecraft thermal control handbook: Vol II cryogenics

  114. Chi SW (1976) Heat pipe theory and practice: a sourcebook.

  115. Maidanik YF, Fershtater YG, and Solodovnik NN (1994) Design and investigation of methods of regulation of loop heat pipes for terrestrial and space applications, doi: https://doi.org/10.4271/941407

  116. Faghri A (2014) Heat pipes: review, opportunities and challenges. Front Heat Pipes. https://doi.org/10.5098/fhp.5.1

    Article  Google Scholar 

  117. Peterson GP, Compagna GL (1987) Review of cryogenic heat pipes in spacecraft applications. J Spacecr Rocket 24(2):99–100. https://doi.org/10.2514/3.25880

    Article  Google Scholar 

  118. Grover GM, Cotter TP, Erickson GF (1964) Structures of very high thermal conductance. J Appl Phys 35(6):1990–1991. https://doi.org/10.1063/1.1713792

    Article  Google Scholar 

  119. Eggers PE, Serkiz AW (1971) Development of cryogenic heat pipes. J Eng Power 93(2):279–286. https://doi.org/10.1115/1.3445564

    Article  Google Scholar 

  120. Prager R and BASIULIS A (1980) The state-of-the-art of cryogenic heat pipes, doi: https://doi.org/10.2514/6.1980-211.

  121. Semena MG, Levterov AI (1978) Study of the thermophysical characteristics of cryogenic heat pipes with a metallic fibrous wick. Inzhenerno Fizicheskii Zhurnal 35:48–53

    Google Scholar 

  122. Ananda AR, Jaiswala A, Ambirajana A, Duttab P (2018) Experimental studies on a miniature loop heat pipe with flat evaporator with various working fluids. Appl Therm Eng 144:495–503. https://doi.org/10.1016/j.applthermaleng.2018.08.092

    Article  Google Scholar 

  123. Anand AR (2019) Investigations on effect of evaporator length on heat transport of axially grooved ammonia heat pipe. Appl Therm Eng 150:1233–1242. https://doi.org/10.1016/j.applthermaleng.2019.01.078

    Article  Google Scholar 

  124. Juhasz A (2008) High conductivity carbon-carbon heat pipes for light weight space power system radiators NASA/TM—2008–215420

  125. Semena MG, Levterov AI (1978) Investigation of the thermophysical characteristics of cryogenic heat pipes with a metal-fiber wick. J Eng Phys 35(1):797–801. https://doi.org/10.1007/BF00866008

    Article  Google Scholar 

  126. Sherman A (1974) Cryogenic and low temperature heat pipe/cooler studies for spacecraft application, doi: https://doi.org/10.2514/6.1974-753

  127. Wanison R, Kimura N, Murakami M (2020) A study of thermal performance change of cryogenic heat pipes by wick structures for wide range of working fluid filling ratio”. IOP Conf Ser: Mater Sci Eng 755(1):012109. https://doi.org/10.1088/1757-899X/755/1/012109

    Article  Google Scholar 

  128. Vlassov VV, Riehl RR (2008) Mathematical model of a loop heat pipe with cylindrical evaporator and integrated reservoir. Appl Therm Eng 28(8–9):942–954. https://doi.org/10.1016/j.applthermaleng.2007.07.016

    Article  Google Scholar 

  129. Wolf DA, Bienert WB (1994) Investigation of temperature control characteristics of loop heat pipes. SAE Trans. https://doi.org/10.4271/941576

    Article  Google Scholar 

  130. Prado-Montes P, Mishkinis D, Kulakov A, Torres A, Pérez-Grande I (2014) Effects of non-condensable gas in an ammonia loop heat pipe operating up to 125°C. Appl Therm Eng 66(1–2):474–484. https://doi.org/10.1016/j.applthermaleng.2014.02.017

    Article  Google Scholar 

  131. Harwell W, Edelstein F, Mcintosh R, and Ollendorf S (1973) Orbiting astronomical observatory heat pipe flight performance data. doi: https://doi.org/10.2514/6.1973-758.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdinç Mermer.

Additional information

Technical Editor: Francis HR Franca.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mermer, E., Ünal, R. Passive thermal control systems in spacecrafts. J Braz. Soc. Mech. Sci. Eng. 45, 160 (2023). https://doi.org/10.1007/s40430-023-04073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04073-5

Keywords

Navigation