Log in

Impedance control as an optimal control problem: a novel formulation of impedance controllers as a subcase of optimal control

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A formulation of impedance control for redundant manipulators is presented here as a particular case of an optimal control problem. This allows the design of an impedance controller that benefits from the stability and efficiency of an optimal controller. To circumvent the high computational costs of finding optimal controllers, a suboptimal feedback controller based on state-dependent Riccati equations (SDRE) is developed. This approach is compared with the quadratic programming (QP) formulation, commonly used to solve redundancy of robotic manipulators. Numerical simulations of a redundant planar four-DOF serial-link manipulator show that the SDRE controller offers superior performance over the QP one in terms of stability, performance and required control effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adams RJ, Hannaford B (1999) Stable haptic interaction with virtual environments. IEEE Trans Robot Autom 15(3):465–474

    Google Scholar 

  2. Aguirre-Ollinger G, Colgate JE, Peshkin MA, Goswami A (2007) Active-impedance control of a lower-limb assistive exoskeleton. In: IEEE 10th International conference on rehabilitation robotics, 2007. ICORR 2007. IEEE, pp 188–195

  3. Arevalo JC, Garcia E (2012) Impedance control for legged robots: an insight into the concepts involved. IEEE Trans Syst Man Cybern Part C (Appl Rev) 42(6):1400–1411

    Google Scholar 

  4. Beeler S, Tran H, Banks H (2000) Feedback control methodologies for nonlinear systems. J Optim Theory Appl 107(1):1–33

    MathSciNet  MATH  Google Scholar 

  5. Bellman R (1957) Dynamic programming and the numerical solution of variational problems. Oper Res 5:277–288

    MathSciNet  Google Scholar 

  6. Bowling A, Harmeyer S (2010) Repeatable redundant manipulator control using nullspace quasivelocities. J Dyn Syst Meas Control 132(3):031007

    Google Scholar 

  7. Burdet E, Franklin DW, Milner TE (2013) Human robotics: neuromechanics and motor control. MIT Press, Cambridge

    Google Scholar 

  8. Carelli R, Kelly R (1991) An adaptive impedance/force controller for robot manipulators. IEEE Trans Autom Control 36(8):967–971

    MathSciNet  MATH  Google Scholar 

  9. Chang KS, Khatib O (1995) Manipulator control at kinematic singularities: a dynamically consistent strategy. In: Intelligent robots and systems 95.’Human robot interaction and cooperative robots’, Proceedings. 1995 IEEE/RSJ international conference on, vol 3. IEEE, pp 84–88

  10. Chen D, Zhang Y (2017) A hybrid multi-objective scheme applied to redundant robot manipulators. IEEE Trans Autom Sci Eng 14(3):1337–1350

    Google Scholar 

  11. Chevallereau C, Abba G, Aoustin Y, Plestan F, Westervelt E, De Wit CC, Grizzle J (2003) Rabbit: a testbed for advanced control theory. IEEE Control Syst Mag 23(5):57–79

    Google Scholar 

  12. Cimen T (2008) State-dependent riccati equation (sdre) control: a survey. IFAC Proc Vol 41(2):3761–3775

    Google Scholar 

  13. Cimen T (2012) Survey of state-dependent riccati equation in nonlinear optimal feedback control synthesis. J Guid Control Dyn 35(4):1025–1047

    Google Scholar 

  14. Cloutier JR (1997) State-dependent Riccati equation techniques: an overview. In: American control conference, 1997. Proceedings of the 1997, vol 2. IEEE, pp 932–936

  15. Crain A, Ulrich S (2019) Experimental validation of pseudospectral-based optimal trajectory planning for free-floating robots. J Guid Control Dyn 42:1–17

    Google Scholar 

  16. Erdem EB, Alleyne AG (2001) Experimental real-time SDRE control of an underactuated robot. In: Proceedings of the 40th IEEE conference on decision and control, 2001, vol 3. IEEE, pp 2986–2991

  17. Fahroo F, Ross I (2000) Trajectory optimization by indirect spectral collocation methods. In: Astrodynamics specialist conference, p 4028

  18. Ferraguti F, Preda N, Manurung A, Bonfe M, Lambercy O, Gassert R, Muradore R, Fiorini P, Secchi C (2015) An energy tank-based interactive control architecture for autonomous and teleoperated robotic surgery. IEEE Trans Robot 31(5):1073–1088

    Google Scholar 

  19. Härkegård O, Glad ST (2005) Resolving actuator redundancy—optimal control vs. control allocation. Automatica 41(1):137–144

    MathSciNet  MATH  Google Scholar 

  20. He W, Dong Y, Sun C (2016) Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans Syst Man Cybern Syst 46(3):334–344

    Google Scholar 

  21. Hogan N (1984) Impedance control: an approach to manipulation. In: American control conference, 1984. IEEE, pp 304–313

  22. Hollerbach J, Suh K (1987) Redundancy resolution of manipulators through torque optimization. IEEE J Robot Autom 3(4):308–316

    Google Scholar 

  23. Hu YR, Goldenberg AA (1993) Dynamic control of coordinated redundant robots with torque optimization. Automatica 29(6):1411–1424

    MathSciNet  MATH  Google Scholar 

  24. Kalman R (1963) The theory of optimal control and the calculus of variations. Mathematical optimization techniques, pp 309–331

  25. Khatib O (1987) A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J Robot Autom 3(1):43–53

    Google Scholar 

  26. Korayem MH, Nekoo SR (2015) Finite-time state-dependent riccati equation for time-varying nonaffine systems: rigid and flexible joint manipulator control. ISA Trans 54:125–144

    Google Scholar 

  27. Korayem MH, Nekoo SR (2015) Suboptimal tracking control of nonlinear systems via state-dependent differential Riccati equation for robotic manipulators. In: 2015 3rd RSI international conference on robotics and mechatronics (ICROM). IEEE, pp 025–030

  28. Li Z, Huang Z, He W, Su CY (2017) Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Trans Ind Electron 64(2):1664–1674. https://doi.org/10.1109/TIE.2016.2538741

    Article  Google Scholar 

  29. Mussa-Ivaldi FA, Hogan N (1991) Integrable solutions of kinematic redundancy via impedance control. Int J Robot Res 10(5):481–491

    Google Scholar 

  30. Nakamura Y, Hanafusa H, Yoshikawa T (1987) Task-priority based redundancy control of robot manipulators. Int J Robot Res 6(2):3–15

    Google Scholar 

  31. Nenchev DN (1989) Redundancy resolution through local optimization: a review. J Field Robot 6(6):769–798

    MATH  Google Scholar 

  32. Okamura AM (2004) Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Robot Int J 31(6):499–508

    Google Scholar 

  33. O’Neil KA (2002) Divergence of linear acceleration-based redundancy resolution schemes. IEEE Trans Robot Autom 18(4):625–631

    Google Scholar 

  34. Oriolo G (1994) Stabilization of self-motions in redundant robots. In: 1994 IEEE international conference on robotics and automation, 1994. Proceedings. IEEE, pp 704–709

  35. Oriolo G, Cefalo M, Vendittelli M (2017) Repeatable motion planning for redundant robots over cyclic tasks. IEEE Trans Robot 33(5):1170–1183

    Google Scholar 

  36. Ott C, Dietrich A, Albu-Schäffer A (2015) Prioritized multi-task compliance control of redundant manipulators. Automatica 53:416–423

    MathSciNet  MATH  Google Scholar 

  37. Pearson J (1962) Approximation methods in optimal control I. Sub-optimal control. Int J Electron 13(5):453–469

    Google Scholar 

  38. Pesch HJ (1989) Real-time computation of feedback controls for constrained optimal control problems. Part 1: neighbouring extremals. Opt Control Appl Methods 10(2):129–145

    MATH  Google Scholar 

  39. Peters J, Mistry M, Udwadia F, Nakanishi J, Schaal S (2008) A unifying framework for robot control with redundant dofs. Auton Robots 24(1):1–12

    Google Scholar 

  40. Pontryagin LS (1987) Mathematical theory of optimal processes. CRC Press, Boca Raton

    Google Scholar 

  41. Roberts RG, Maciejewski AA (1993) Repeatable generalized inverse control strategies for kinematically redundant manipulators. IEEE Trans Autom Control 38(5):689–699

    MathSciNet  MATH  Google Scholar 

  42. Ross SM, Cobb RG, Baker WP, Harmon FG (2015) Implementation lessons and pitfalls for real-time optimal control with stochastic systems. Opt Control Appl Methods 36(2):198–217

    MathSciNet  MATH  Google Scholar 

  43. Rossi LF, Parik-Americano P, Simões IFE, Forner-Cordero A (2019) Predicted step viability: a stability criterion for biped gait. J Br Soc Mech Sci Eng 41(12):548

    Google Scholar 

  44. Sadeghian H, Villani L, Keshmiri M, Siciliano B (2014) Task-space control of robot manipulators with null-space compliance. IEEE Trans Robot 30(2):493–506

    Google Scholar 

  45. Schlegl T, Buss M, Omata T, Schmidt G (2001) Fast dextrous re-gras** with optimal contact forces and contact sensor-based impedance control. In: IEEE international conference on robotics and automation, 2001. Proceedings 2001 ICRA, vol 1. IEEE, pp 103–108

  46. Semini C, Barasuol V, Boaventura T, Frigerio M, Focchi M, Caldwell DG, Buchli J (2015) Towards versatile legged robots through active impedance control. Int J Robot Res 34(7):1003–1020

    Google Scholar 

  47. Singh SK, Popa DO (1995) An analysis of some fundamental problems in adaptive control of force and impedance behavior: theory and experiments. IEEE Trans Robot Autom 11(6):912–921

    Google Scholar 

  48. Suh K, Hollerbach J (1987) Local versus global torque optimization of redundant manipulators. In: 1987 IEEE international conference on robotics and automation. Proceedings, vol 4. IEEE, pp 619–624

  49. Tafazoli S, Salcudean SE, Hashtrudi-Zaad K, Lawrence PD (2002) Impedance control of a teleoperated excavator. IEEE Trans Control Syst Technol 10(3):355–367

    MATH  Google Scholar 

  50. Tsagarakis NG, Caldwell DG (2003) Development and control of a ‘soft-actuated’ exoskeleton for use in physiotherapy and training. Auton Robots 15(1):21–33

    Google Scholar 

  51. Watanabe K, Iwase M, Hatakeyama S, Maruyama T (2009) Control strategy for a snake-like robot based on constraint force and verification by experiment. Adv Robot 23(7–8):907–937

    Google Scholar 

  52. Xu Q (2013) Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper. IEEE Trans Robot 29(3):663–673

    Google Scholar 

  53. Zhang Z, Lin Y, Li S, Li Y, Yu Z, Luo Y (2017) Tricriteria optimization-coordination motion of dual-redundant-robot manipulators for complex path planning. IEEE Trans Control Syst Technol 26:1345–1357

    Google Scholar 

Download references

Acknowledgements

A.F.C. research is sponsored by the CNPq (Grant: 311055/2016-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Forner-Cordero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Victor Juliano De Negri, D.Eng.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furtado, G.P., Americano, P.P. & Forner-Cordero, A. Impedance control as an optimal control problem: a novel formulation of impedance controllers as a subcase of optimal control. J Braz. Soc. Mech. Sci. Eng. 42, 513 (2020). https://doi.org/10.1007/s40430-020-02586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02586-x

Keywords

Navigation