Log in

The physiological function and molecular mechanism of hydrogen sulfide resisting abiotic stress in plants

  • Biochemistry & Physiology - Review Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) is the third gas signal molecule after nitrogen dioxide and carbon monoxide. It participates in many important daily activities in plants and can promote plant seed germination, photosynthesis and organic matter accumulation, pore movement, side rooting and delaying plant aging. In recent years, studies have shown that H2S plays an important role in plant resistance to biological and abiotic stress. This article introduces the anabolic pathway of H2S in plants and the important functions of H2S in relieving plant stress from heavy metals, high salinity, low oxygen, drought, high and low temperature, and summarizes the research advances on the mechanism of resistance. At the same time, the interaction and the potential molecular mechanism between H2S and other signaling molecules are discussed, which should provide a theoretical reference for future in-depth research on the mechanism of action of H2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Al Ubeed H, Wills R, Bowyer M (2017) Interaction of exogenous hydrogen sulphide and ethylene on senescence of green leafy vegetables. J Postharvest Biol Technol 133:81–87

    Article  CAS  Google Scholar 

  • Alvarez C, Bermudez MA, Romero LC, Ceciliz G (2012) Irene G Cysteine homeostasis plays an essential role in plant immunity. New Phytol 193:165–177

    Article  CAS  PubMed  Google Scholar 

  • Alvarez C, Calo L, Lc R (2010) An 0-acetylserine (thiol) lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol 152:656–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca A, Zhang J, **e Y, Romero LC, Gotor C (2021) Hydrogen sulfide signaling in plant adaptations to adverse conditions: molecular mechanisms. J Exp Bot 72:16. https://doi.org/10.1093/jxb/erab239

    Article  CAS  Google Scholar 

  • Aroca A, Benito JM, Gotor C (2017a) Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis. Exp Bot 68:4915–4927

    Article  CAS  Google Scholar 

  • Aroca A, Gotor C, Romero LC (2018) Hydrogen sulfide signaling in plants: emerging roles of protein persulfidation. Front Plant Sci 9:1369. https://doi.org/10.3389/fpls.2018.01369

    Article  PubMed  PubMed Central  Google Scholar 

  • Aroca A, Serna A, Gotor C (2017b) S-sulfhydration: a cysteine posttranslational modification in plant systems. Plant Physiol 168:334–342

    Article  CAS  Google Scholar 

  • Chen J, Shang YT, Wang WH (2016) Hydrogen sulfide-mediated polyarnines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in spinacia oleracea seedlings. Front Plant Sci. 7:1173. https://doi.org/10.3389/Fpls.2016.01173

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wang WH, Wu FH (2013) Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. Plant Soil 362:301–318

    Article  CAS  Google Scholar 

  • Chen X, Chen Q, Zhang X (2016b) Hydrogen sulfide mediates nicotine biosynthesis in tobacco ( nicotiana tabacum) under high temperature conditions. Plant Physiol Biochem 104:174–179

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Chen M, Jiang M (2017) Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings. Plant Physiol Biochem 111:179–192

    Article  CAS  PubMed  Google Scholar 

  • Christou A, Filippou P, Manganaris GA (2014) Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol 14:42f-10–22

  • Dai HF, Xu YJ, Zhao LF (2016) Alleviation of copper toxicity on chloroplast antioxidant capacity and photosystem ii photochemistry of wheat by hydrogen sulfide. Braz J Bot 3:787–793

    Article  Google Scholar 

  • Deng YQ, Bao J, Yuan F (2016) Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing na+ content. Plant Growth Regul 79:391–399

    Article  CAS  Google Scholar 

  • Du XZ, ** ZP, Liu DM (2017) Hydrogen sulfide alleviates the cold stress through mpk4 in arabidopsis thaliana J Plant Physiol Biochem 120:112–119

    Article  CAS  Google Scholar 

  • Fang HH, **g T, Liu ZH (2014) Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in setaria italic. Cell Calcium 56:472–481

    Article  CAS  PubMed  Google Scholar 

  • Fang HH, Liu ZQ, ** ZQ (2016) An Emphasis of hydrogen sulfide-cysteine cycle on enhancing the tolerance to chromiuin stress in Arabidopsis. Environ Pollut 213:870–877

    Article  CAS  PubMed  Google Scholar 

  • Filipovic MR, Jovanovic VM (2017) more than just an intermediate: hydrogen sulfide signalling in plants. Exp Bot 68:4733–4736

    Article  CAS  Google Scholar 

  • Garcia-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol 188:977–984

    Article  CAS  PubMed  Google Scholar 

  • Goodwin LR, Francom D, Dieken FP, Taylor JD, Warenyciam W, Reiffenstein RJ, Dowling G (1989) Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J Anal Toxicol 13:105–109

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang J, Liu J, Liu T, Xue S (2021) Hydrogen sulfide (H2S) signaling in plant development and stress responses, aBIOTECH 1: 132. doi:https://doi.org/10.1007/s42994-021-00035-4

  • He HY, He LF, Gu MH (2012) Interactions between nitric oxide and plant hormones in aluminum tolerance. J Plant Signal Behav 7:469–471

    Article  CAS  Google Scholar 

  • Hu L, Li H, Huang SJ (2018) Eugenol confers cadmium tolerance via intensifying endogenous hydrogen sulfide signaling in Brassica Rapa. J Agric Food Chem 66:9914–9922

    Article  CAS  PubMed  Google Scholar 

  • ** Z, Pei Y (2015) Physiological implications of hydrogen sulfide in plants: pleasant exploration behind its unpleasant odour. Oxid Med Cell Longev 2015:1–6. https://doi.org/10.1155/2015/397502

    Article  Google Scholar 

  • Kabala K, Zboinska M, Glowiak D (2018) Interaction between the signaling molecules hydrogen sulfide and hydrogen peroxide and their role in vacuolar H-atpase regulation in cadmium-stressed cucumber roots. Physiol Plant 166:688–704

    Article  PubMed  CAS  Google Scholar 

  • Kabil O, Vitvitsky V, Banerjee R (2014) Sulfur as a signaling nutrient through hydrogen sulfide. Ann Rev Nutr 34:171–205

    Article  CAS  Google Scholar 

  • Kabil O, Banerjee R (2010) Redox biochemistry of hydrogen sulfide. Biol Chem 285:21903–21907

    Article  CAS  Google Scholar 

  • Kaur C, Kushwaha HR, Mustafiz A (2019) analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule. Front Plant Sci. https://doi.org/10.3389/Fpls.2015.00682

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MN, Mobin M, Abbas ZK (2017) Nitric oxideinduced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide 68:91–102

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Haas FH, Samami AA (2010) Sulfite reductase defines a newly discovered bottleneck for assimilatorv sulfate reduction and is essential for growth and development in arabidopsis thaliana L. Plant Cell 22:1216–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna K, Sharma N, Kour S, Ali M, Ohri P, Bhardwaj R (2021) Hydrogen sulfide: a robust combatant against abiotic stresses in plants. Hydrogen 2:319–342

    Article  CAS  Google Scholar 

  • Lai DW, Mao Y, Zhou H (2014) Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced k+ loss in seedlings of medicago saliva. Plant Sci 225:117–129

    Article  CAS  PubMed  Google Scholar 

  • Li K, Yang F, Zhang G (2017) Aik1, a mitogen-activated protein kinase, modulates abscisic acid responses through the mkk5-mpk6 kinase cascade. Plant Physiol 173:1391–1408

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Ding XJ, Du PF (2013a) Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline. J Plant Physiol 170:741–747

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Luo LJ, Zhu LP (2014) Involvement of trehalose in hydrogen sulfide donor sodium hydrosulfide-induced the acquisition of heat tolerance in maize (Zea Mays L.) seedlings. Bot Stud 55:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li ZG, Min X, Zhou ZH (2016) Hydrogen sulfide: a signal molecule in plant cross-adaptation. Front Plant Sci 7(42):1621

    PubMed  PubMed Central  Google Scholar 

  • Li ZG (2013) Hydrogen sulfide: a multifunctional gaseous molecule in plants. Russian J Plant Physiol 60:733–740

    Article  CAS  Google Scholar 

  • Li ZG, Yang SZ, Long WB (2013b) Hydrogen sulphide may be a novel downstream signal molecule in nitric oxideinduced heat tolerance of maize (Zea Mays L.) seedlings. Plant Cell Environ 36:1564–1572

    Article  CAS  PubMed  Google Scholar 

  • Liang YL, Zheng P, Li S (2018) Nitrate reductase dependent no production is involved in h2s-induced nitrate stress tolerance in tomato via activation of antioxidant enzymes. Sci Horticult 229:207–214

    Article  CAS  Google Scholar 

  • Liu X, Chen J, Wang GH (2016) Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solarium Nigrum L. Plant Soil 400:177–192

    Article  CAS  Google Scholar 

  • Ma DY, Ding HN, Wang CY, Qin HX, Han QX, Hou JF, Lu HF, **e YX, Guo TC (2016) Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS ONE 11:1–16

    Google Scholar 

  • Ma YL, Zhang W, Niu J (2019) hydrogen sulfide may function downstream of hydrogen peroxide in salt stress-induced stomatal closure in vicia faba. Funct Plant Biol 2:136–145

    Article  CAS  Google Scholar 

  • Mostofa MG, Saegusa D, Fujita M (2019) Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Front. Plant Sci. 2015:1055. https://doi.org/10.3389/Fpls.2015.01055

    Article  Google Scholar 

  • Pei YX (2016) Gasotransmitter hydrogen sulfide in plant: stinking to high heaven, but refreshing to fine life. Chin J Biochem Mol Biol 32:721–733

    CAS  Google Scholar 

  • Raiamanickam B, **song B (2011) Hydrogen sulfide gas has cell growth regulatory role. Eur J Pharmacol 656:5–9

    Article  CAS  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defense operations. Trends Plant Sci 10:503–509

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg H (1984) The fate excess of sulfur in higher plants. Ann Rev Plant Physiol 35:121–153

    Article  CAS  Google Scholar 

  • Rizwan M, Mostofa MG, Ahmad MZ (2018) Nitric oxide induces rice tolerance to excessive nickel by regulating nickel uptake, reactive oxygen species detoxification and defense-related gene expression. Chemosphere 191:23–35

    Article  CAS  PubMed  Google Scholar 

  • Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, Chen Y (2014) Silicon application increases drought tolerance of kentucky bluegrass by improving plant water relations and morphophysiological functions. Sci World J 5:1–10. https://doi.org/10.1155/2014/368694

    Article  CAS  Google Scholar 

  • Scuffi D, Alvarez C, Laspina N (2014) Hydrogen sulfide generated by l-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatai closure. Plant Phsiol 166:2065–2076

    Article  CAS  Google Scholar 

  • Saud S, Shi Z, **ong L, Danish S, Datta R, Ahmad I, Fahad S, Banout J (2021) Recognizing the basics of phytochrome-interacting factors in plants for abiotic stress tolerance. Plant Stress. https://doi.org/10.1016/j.stress.2021.100050

    Article  Google Scholar 

  • Shan CJ, Zhang SL, Ou XQ (2018) the roles of h2s and h2o2 in regulating asa-gsh cycle in the leaves of wheat seedlings under drought stress. Protoplasma 255:1257–1262

    Article  CAS  PubMed  Google Scholar 

  • Sheldon AR, Menzies NW (2005) the effect of copper toxicity on the growth and root morphology of Rhodes grass (chloris gayana knuth.) in resin buffered solution culture. Plant Soil 278:341–349

    Article  CAS  Google Scholar 

  • Shen JJ, **ng TJ, Yuan HH, Liu Z (2019) Hydrogen sulfide improves drought tolerance in arabidopsis thaliana by microrna expressions. Plos One 8:E77047-10–22

  • Shi HT, Ye TT, Han N (2015a) Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in arabidopsis. Integrative Plant Biol 57:628–640

    Article  CAS  Google Scholar 

  • Shi Y, Ding Y, Yang S (2015) Cold signal transduction and its interplay with phytohormones during cold acclimation. J Plant Cell Physiol 56:7–15

    Article  CAS  Google Scholar 

  • Singh VP, Singh S, Kumar J (2015) Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through upregulation of the ascorbate-glutathione cycle: possible involvement of nitric oxide. Plant Physiol 181:20–29

    Article  CAS  Google Scholar 

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203. https://doi.org/10.4161/psb.6.2.14701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM (2014) Classical Renin-angiotensin system in kidney physiology. Compr Physiol 4:1201–1228. https://doi.org/10.1002/cphy.c130040

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya CP, Venkatesh J, Gururani MA (2011) transgenic potato overproducing l-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Let 33:2297–2307

    Article  CAS  Google Scholar 

  • Wang R (2012a) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896. https://doi.org/10.1152/physrev.00017.2011

    Article  CAS  PubMed  Google Scholar 

  • Wang R (2012b) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896

    Article  CAS  PubMed  Google Scholar 

  • Wang YQ, Li L, Cui WT (2012) Hydrogen sulfide enhances alfalfa ( medicago saliva ) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil 351:107–119

    Article  CAS  Google Scholar 

  • **e YJ, Zhang C, Lai IW (2014) Hydrogen sulfide delays ga-triggered programmed cell death in wheat aleurone layers by the modulation of glutathione homeostasis and heme oxygenase-1 expression. J Plant Physiol 171: 53-62

  • **e Z, Nolan TM, Jiang H, Yin Y (2019) AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in arabidopsis. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00228

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu HN, Sun X, Yang XY (2013) Physiological responses to nitrate stress of transgenic tobacco plants harbouring the cucumber mitogen-activated protein kinase gene. Turkish J Bot 37:130–138

    CAS  Google Scholar 

  • Yang LP, Zeng J, Wang P (2018) Sodium hydrosulfide alleviates cadmium toxicity by changing cadmium chemical forms and increasing the activities of antioxidant enzymes in salix. Environ Exp Bot 156:161–169

    Article  CAS  Google Scholar 

  • Zhang P, Luo Q, Wang R (2019) Hydrogen sulfide toxicity inhibits primary root growth through the ros-no pathway. Sci Rep 7: 86810–22

  • Zhao X, Yu Z, Ding T (2020) Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms. 8:425. https://doi.org/10.3390/microorganisms8030425

    Article  CAS  PubMed Central  Google Scholar 

  • Zhou. ZH, Wang Y, Ye XY (2018) Signaling molecule hydrogen sulfide improves seed germination and seedling growth of maize (zea mays L.) under high temperature by inducing antioxidant system and osmolyte biosynthesis. Front Plant Sci 9:1288. https://doi.org/10.3389/Fpls.2ol8.01288

Download references

Acknowledgements

We thank the College of Life sciences, Linyi University, Linyi, China and Faculty of Agriculture, Erciyes University, Kayseri, Turkey.

Funding

We thank the College of life sciences, Linyi University, Linyi, Shandong, China and Faculty of Tropical Agrisciences Czech University of Life Sciences Prague.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.S, S.H and SF, and S.S, L.X, X.S, writing—original draft, S.S, and SF; writing—review and editing, S.S, and SF, and S.A.

Corresponding author

Correspondence to Shah Fahad.

Ethics declarations

Conflict of interest

There are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Ethics Approval and Consent to Participate

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saud, S., Hassan, S., **ong, L. et al. The physiological function and molecular mechanism of hydrogen sulfide resisting abiotic stress in plants. Braz. J. Bot 45, 563–572 (2022). https://doi.org/10.1007/s40415-022-00785-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-022-00785-5

Keywords

Navigation