Log in

Polynomial-exponential stability and blow-up solutions to a nonlinear damped viscoelastic Petrovsky equation

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

This work is concerned with the initial boundary value problem for a nonlinear viscoelastic Petrovsky equation

$$\begin{aligned} u_{tt}+\Delta ^{2}u-\int _{0}^{t}g(t-\tau )\Delta ^{2}u(\tau )d\tau -\Delta u_{t}-\Delta u_{tt}+u_{t}|u_{t}|^{m-1}=u|u|^{p-1}. \end{aligned}$$

We prove that the solution energy has polynomial rate of decay, even if the kernel g decays exponentially provided \(m>1\) while decay rates is exponentially in the case of weak dam**. The unbounded properties of solutions in two cases \(m=1\) and \(p>m\ge 1\) have been also investigated. For the first case, we prove the blow-up of solutions with different ranges of initial energy. For the second case, we prove blow-up of solutions under some restrictions on g when the initial energy is negative or non negative at less than potential well depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev spaces, pure and applied mathematics, vol. 65. Academic Press, New York, London (1975)

    Google Scholar 

  2. Amroun, N.E., Benaissa, A.: Global existence and energy decay of solutions to a Petrovsky equation with general nonlinear dissipation and source term. Georgian. Math. J. 13, 397–410 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Ferreira, J.: Existence and uniform decay for a nonlinear viscoelastic equation with strong dam**. Math. Meth. Appl. Sci. 24, 1043–1053 (2001)

    Article  MATH  Google Scholar 

  4. Guesmia, A.: Existence globale et stabilisation interne non linéaire d’un système de Petrovsky. Bell. Belg. Math. Soc. 5, 583–594 (1998)

    MATH  Google Scholar 

  5. Han, X.S., Wang, M.X.: Global existence and uniform decay for a nonlinear viscoelastic equation with dam**. Nonlinear Anal. 70, 3090–3098 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Han, X.S., Wang, M.X.: General decay of energy for a viscoelastic equation with nonlinear dam**. Math. Method. Appl. Sci. 32, 346–358 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Komornik, V.: Exact controllability and stabilization, the multiplier method, Wiely–Masson series research in applied mathematics (1995)

  8. Li, F., Gao, Q.: Blow up of solutions for a nonlinear Petrovsky type equation with memory. Appl. Math. Comput. 274, 383–392 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Li, G., Sun, Y., Liu, W.: Global existence and blow up of solutions for a strongly damped Petrovsky system with nonlinear dam**. Appl. Anal. 91(3), 575–586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, M.R., Tsai, L.Y.: Existence and nonexistence of global solutions of some system of semilinear wave equations. Nonlinear Anal. 54(8), 1397–1415 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, G., Sun, Y., Liu, W.: On asymptotic behavior and blow-up of solutions for a nonlinear viscoelastic Petrovsky Equation with positive initial energy. J. Funct. Spaces Appl. 2013, 1–7 (2013). https://doi.org/10.1155/2013/905867

    Article  MathSciNet  MATH  Google Scholar 

  12. Messaoudi, S.A.: Global existence and nonexistence in a system of Petrovsky. J. Math. Anal. Appl. 265, 296–308 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Messaoudi, S.A.: Blow-up of positive initial energy solutions of a nonlinear viscoelastic hyperbolic equation. J. Math. Anal. Appl. 320, 902–915 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Messaoudi, S.A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear. Anal. Theory Methods Appl. 69, 2589–2598 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Messaoudi, S.A.: Tatar, N-E: Global existence and uniform stability of solutions for a quasilinear viscoelastic problem. Math. Meth. Appl. Sci. 30, 665–680 (2007)

    Article  MATH  Google Scholar 

  16. Messaoudi, S.A.: Tatar, N-E: Global existence and asymptotic behavior for a nonlinear viscoelastic problem. Math. Sci. Res. J. 7(4), 136–149 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Ragusa, M.A., Tachikawa, A.: Boundary regularity of minimizers of \(p(x)\)-energy functionals. Ann. I. H. Poincare-An 33(2), 451–476 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9, 710–728 (2020). https://doi.org/10.1515/anona-2020-0022

  19. Rivera, J.E.M., Lapa, E.C., Barreto, R.: Decay rates for viscoelastic plates with memory. J. Elast. 44, 61–87 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rivera, J.E.M., Naso, M.G., Vegni, F.M.: Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory. J. Math. Anal. Appl. 286, 692–704 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tahamtani, F., Peyravi, A.: Global existence, uniform decay, and exponential growth of solutions for a system of viscoelastic Petrovsky equations. Turk. J. Math. 38, 87–109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, S.T.: General decay of solutions for a viscoelastic equation with nonlinear dam** and source terms. Acta. Math. Sci. 31B, 1436–1448 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Wu, S.T.: General decay of energy for a viscoelastic equation with dam** and source term. Taiwan J. Math. 16(1), 113–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, S.T.: Energy decay rates via convexity for some second-order evolution equation with memory and nonlinear time-dependent dissipation. Nonlinear Anal. Theory Methods Appl. 74, 532–543 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, S.T., Tsai, L.Y.: On global Solutions and blow up of solutions for a nonlinearly damped Petrovsky system. Taiwan J. Math. 13, 545–558 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu, R., Yang, Y., Liu, Y.: Global well-posedness for srtrongly damped viscoelastic wave equation. Appl. Anal. (2011). https://doi.org/10.1080/00036811.2011.6014.601456

    Article  Google Scholar 

  27. Yang, Z., Fan, G.: Blow-up for the euler-bernoulli viscoelastic equation with a nonlinear source. Electron. J. Differ. Equ. 306, 1–12 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yu, S.Q.: On the strongly damped wave equation with nonlinear dam** and source terms. Electron. J. Qual. Theory Differ. Equ. 39, 1–18 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Peyravi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyravi, A., Tahamtani, F. Polynomial-exponential stability and blow-up solutions to a nonlinear damped viscoelastic Petrovsky equation. SeMA 77, 181–201 (2020). https://doi.org/10.1007/s40324-019-00210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-019-00210-0

Keywords

Mathematics Subject Classification

Navigation