Log in

Numerical solution of time-fractional Kawahara equation using reproducing kernel method with error estimate

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We present a new approach depending on reproducing kernel method (RKM) for time-fractional Kawahara equation with variable coefficient. This approach consists of obtaining an orthonormal basis function on specific Hilbert spaces. In this regard, some special Hilbert spaces are defined. Kernel functions of these special spaces are given and basis functions are obtained. The approximate solution is attained as serial form. Convergence analysis, error estimation and stability analysis are presented after obtaining the approximate solution. To show the power and effect of the method, two examples are solved and the results are given as table and graphics. The results demonstrate that the presented method is very efficient and convenient for Kawahara equation with fractional order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abu Arqub O, Al-Smadi M (2018) Numerical algorithm for solving time-fractional partial integro differential equations subject to initial and Dirichlet boundary conditions. Numer Methods Partial Differ Equ 34:1577–1597

    Article  MATH  Google Scholar 

  • Abu Arqub O, Maayah B (2018) Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator. Chaos, Solitons Fractals 117:117–24

    Article  MathSciNet  Google Scholar 

  • Abu Arqub O, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differentialequations using reproducing kernel Hilbert space method. Appl Math Comput 219:8938–8948

    MathSciNet  MATH  Google Scholar 

  • Abu Arqub O, Odibat Z, Al-Smadi M (2018) Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dyn 94:1819–1834

    Article  MATH  Google Scholar 

  • Akram G, Rehman H (2013) Numerical solution of eighth order boundary value problems in reproducing Kernel space. Numer Algorithms 62:527–540

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Smadi M, Abu Arqub O (2019) Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Appl Math Comput 342:280–294

    MathSciNet  Google Scholar 

  • Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68:337–404

    Article  MathSciNet  MATH  Google Scholar 

  • Arqub O (2017) Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput Math Appl 73(6):1243–1261

    Article  MathSciNet  MATH  Google Scholar 

  • Arqub O (2018) Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer Methods Partial Differ Equ 2018(34):1759–1780

    Article  MathSciNet  MATH  Google Scholar 

  • Arqub O, Al-Smadi M (2018) Atangana-Baleanu fractional approach to the solutions of Bagley–Torvik and Painlev\(\acute{e}\) equations in Hilbert space. Chaos, Solitons Fractals 117:161–167

    Article  MathSciNet  Google Scholar 

  • Bagherzadeh AS (2017) B-Spline collocation method for numerical solution of nonlinear Kawahara and modified Kawahara equations. TWMS J Appl Eng Math 7(2):188–199

    MathSciNet  MATH  Google Scholar 

  • Beyrami H, Lotfi T, Mahdiani K (2017) Stability and error analysis of the reproducing kernel Hilbert space method for the solution of weakly singular Volterra integral equation on graded mesh. Appl Numer Math 120(2017):197–214

    Article  MathSciNet  MATH  Google Scholar 

  • Bibi N, Tirmizi SIA, Haq S (2011) Meshless method of lines for numerical solution of Kawahara type equations. Appl Math 2011(2):608–618

    Article  MathSciNet  Google Scholar 

  • Cui MG, Lin YZ (2009) Nonlinear numercal analysis in the reproducing kernel space. Nova Science Publisher, New York

    Google Scholar 

  • Cui S, Deng D, Tao S (2006) Global existence of solutions for the Cauchy problem of the Kawahara equation with \(L^2\) initial data. Acta Math Sin (Engl Ser) 22(5):1457–1466

    Article  MathSciNet  MATH  Google Scholar 

  • Dereli Y, Dag I (2012) Numerical solutions of the Kawahara type equations using radial basis functions. Numer Methods Partial Differ Equ 28(2):542–553

    Article  MathSciNet  MATH  Google Scholar 

  • Diethelm K (2010) The analysis of fractional differential equations. Lecture notes in mathematics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Faminskii AV, Opritova MA (2015) On the initial-boundary-value problem in a half-strip for a generalized Kawahara equation. J Math Sci 206(1):17–38

    Article  MathSciNet  MATH  Google Scholar 

  • Haragus M, Lombardi E, Scheel A (2006) Spectral stability of wave trains in the Kawahara equation. J Math Fluid Mech 8(4):482–509

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang W, Lin Y (2010) Approximate solution of the fractional advection-dispersion equation. Comput Phys Commun 181:557–561

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang W, Lin Y (2011) Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space. Commun Nonlinear Sci Numer Simul 16:3639–3645

    Article  MathSciNet  MATH  Google Scholar 

  • Kabakouala A, Molinet L (2018) On the stability of the solitary waves to the (generalized) Kawahara equation. J Math Anal Appl 457(1):478–497

    Article  MathSciNet  MATH  Google Scholar 

  • Kawahara T (1972) Oscillatory solitary waves in dispersive media. J Phys Soc Japan 33(1):260–264

    Article  Google Scholar 

  • Lakshmikantham V, Leela S, Vasundhara Devi J (2009) Theory of fractional dynamic systems. Cambridge Scientific Publishers, Cambridge

    MATH  Google Scholar 

  • Lin Y, Zhou Y (2004) Solving the reaction-diffusion equations with nonlocal boundary conditions based on reproducing kernel space. Numer Methods Partial Differ Equ 25(6):1468–1481

    Article  MathSciNet  MATH  Google Scholar 

  • Lu J (2008) Analytical approach to Kawahara equation using variational iteration method and homotopy perturbation method. Topol Methods Nonlinear Anal 31:287–293

    MathSciNet  MATH  Google Scholar 

  • Mohammadi M, Mokhtari R (2014) A reproducing kernel method for solving a class of nonlinear systems of PDEs. Math Model Anal 19(2):180–198

    Article  MathSciNet  Google Scholar 

  • Mohammadi M, Mokhtari R, Panahipour H (2013) A Galerkin-reproducing kernel method: application to the 2D nonlinear coupled Burgers equations. Eng Anal Bound Elem 37:1642–1652

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammadi M, Zafarghandi FS, Babolian E, Jvadi S (2018) A local reproducing kernel method accompanied by some different edge improvement techniques: application to the Burgers’ equation. Iran J Sci Technol Trans Sci 42:857–871

    Article  MathSciNet  MATH  Google Scholar 

  • Osman MS (2017) Multiwave solutions of time-fractional (2+1)-dimensional Nizhnik–Novikov–Veselov equations. Pramana J Phys 88(67):1–9

    Google Scholar 

  • Osman MS, Korkmaz A, Rezazadeh H, Mirzazadeh M, Eslami M, Zhou Q (2018) The unified method for conformable time fractional Schrödinger equation with perturbation terms. Chin J Phys 56(5):2206–2500

    Article  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  • Polat N, Kaya D, Tutalar HI (2006) A analytic and numerical solution to a modified Kawahara equation and a convergence analysis of the method. Appl Math Comput 181:193–199

    MathSciNet  MATH  Google Scholar 

  • Rezazadeh H, Osman MS, Eslami M, Ekici M, Sonmezoglu A, Asma M, Othman WAM, Wong BR, Mirzazadeh M, Zhou Q, Biswas A, Belic M (2018) Mitigating internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity. Optik 164(2018):84–92

    Article  Google Scholar 

  • Rezazadeh H, Osman MS, Eslami M, Mirzazadeh M, Zhou Q, Badri SA, Korkmaz A (2019) Hyperbolic rational solutions to a variety of conformable fractional Boussinesq-Like equations. Nonlinear Eng 8(2019):227–230

    Google Scholar 

  • Safavi M, Khajehnasiri AA (2016) Solutions of the modified Kawahara equation with time-and space-fractional derivatives. J Mod Methods Numer Math 7(1):10–18

    Article  MathSciNet  MATH  Google Scholar 

  • Saitoh S, Sawano Y (2016) Theory of reproducing kernels and applications. Developments in mathematics. Springer, Singapore

    Book  MATH  Google Scholar 

  • Sakar MG, Akgül A, Baleanu D (2017) On solutions of fractional Riccati differential equations. Adv Differ Equ 39:1–10

    MathSciNet  MATH  Google Scholar 

  • Sakar MG, Saldır O, Erdogan F (2018) An iterative approximation for time-fractional Cahn–Allen equation with reproducing kernel method. Comput Appl Math 37(5):5951–5964

    Article  MathSciNet  MATH  Google Scholar 

  • Sakar MG, Saldır O, Akgül A (2019) A novel technique for fractional Bagley-Torvik equation. Proc Natl Acad Sci India Sect A Phys Sci 89(3):539–545

    Article  MathSciNet  Google Scholar 

  • Schwartz L (1964) Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés (noyaux reproduisants). J Anal Math 13:115–256

    Article  MATH  Google Scholar 

  • Shuang** T, Shuangbin C (2002) Existence and uniqueness of solutions to nonlinear Kawahara equations. Chin Ann Math Ser A 23(2):221–228

    MathSciNet  MATH  Google Scholar 

  • Wang Y, Du M, Tan F, Li Z, Nie T (2013) Using reproducing kernel for solving a class of fractional partial differential equation with non-classical conditions. Appl Math Comput 219:5918–5925

    MathSciNet  MATH  Google Scholar 

  • Yao H (2011) Reproducing Kernel method for the solution of nonlinear hyperbolic telegraph equation with an integral condition. Numer Methods Partial Differ Equ 27(4):867–886

    Article  MathSciNet  MATH  Google Scholar 

  • Zarebnia M, Aghili A (2016) A new approach for numerical solution of the modified Kawahara equation. J Nonlinear Anal Appl 2016(2):48–59

    Google Scholar 

  • Zaremba S (1908) Sur le calcul numérique des fonctions demandées dans le probléme de Dirichlet et le problème hydrodynamique. Bulletin International de l’Académie des Sciences de Cracovie, pp 125–195

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Saldır.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saldır, O., Sakar, M.G. & Erdogan, F. Numerical solution of time-fractional Kawahara equation using reproducing kernel method with error estimate. Comp. Appl. Math. 38, 198 (2019). https://doi.org/10.1007/s40314-019-0979-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0979-1

Keywords

Mathematics Subject Classification

Navigation