Log in

A nonmonotone Levenberg–Marquardt method for nonlinear complementarity problems under local error bound

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a new Levenberg–Marquardt algorithm for nonlinear complementarity problems. The algorithm is based on a semismooth equation reformulation of the complementarity problem using the FB function. To obtain the global convergence, we use a modified nonmonotone line search rule. Under the local error bound assumption, which is weaker than the nonsingularity condition, we get the local superlinear/quadratic convergence of the algorithm. Some numerical examples are given to illustrate the performance and efficiency of the presented algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn BH (1983) Iterative methods for linear complementarity problem with upperbounds and lowerbounds. Math Prog 26:265–337

    Google Scholar 

  • Clarke FH (1983) Optimization and nonsmooth analysis. Wiley, New York

    MATH  Google Scholar 

  • Dan H, Yamashita N, Fukushima M (2002) Convergence properties of the inexact Levenberg–Marquardt method under local error bound conditions. Optim Methods Softw 17:605–626

    Article  MathSciNet  MATH  Google Scholar 

  • Dirkse S, Ferris M (1995) MCPLIB: a collection of nonlinear mixed complementarity problems. Optim Methods Softw 5:319–345

    Article  Google Scholar 

  • Du S, Gao Y (2010) Convergence analysis of nonmonotne Levenberg–Marquardt algorithms for complementarity problem. Appl Math Comput 216:1652–1659

    MathSciNet  MATH  Google Scholar 

  • Facchinei F, Kanzow C (1997) A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Math Prog 76:493–512

    MathSciNet  MATH  Google Scholar 

  • Fischer A (1997) Solution of monotone complementarity problems with locally Lipschitz functions. Math Prog 76:669–713

    Google Scholar 

  • Ferris MC, Pang JS (1997) Engineering and economic applications of complementarity problems. SIAM Rev 39:669–713

    Article  MathSciNet  MATH  Google Scholar 

  • Gu NZ, Mo JT (2008) Incorporating nonmonotone strategies into the trust region method for unconstrained optimization. Appl Math Comput 55:2158–2172

    Article  MathSciNet  MATH  Google Scholar 

  • Harker PT, Pang JS (1990) Finite-dimensional vriational inequality and nonlinear complementarity problem: a survey of theory, algorithms and applications. Math Program 48(1):161–220

    Article  MATH  Google Scholar 

  • Kanzow C (1996) Global convergence properties of some iterative methods for linear complementarity problems. SIAM J Optim 6:326–341

    Article  MathSciNet  MATH  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain nonlinear problems in least squares. Quart Appl Math 2:164–166

    Article  MathSciNet  MATH  Google Scholar 

  • Luks̆an L (1994) Inexact trust region method for large sparse systems of nonlinear equations. J Optim Theory Appl 81:569–590

  • Luca TD, Facchinei F, Kanzow C (1996) A semismooth equation approach to the solution of nonlinear complementarity problems. Math Prog 75:407–439

    MathSciNet  MATH  Google Scholar 

  • Luo ZQ (2000) New error bounds and their applications to convergence analysis of iterative algorithm. Math Program Ser B 88–341 (2000)

  • Ma C, Tang J (2008) The quadratic convergence of a smoothing Levenberg–Marquardt method for nonlinear complementarity problem. Appl Math Comput 197:566–581

    MathSciNet  MATH  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear inequalities. SIAM J Appl Math 11:431–441

    Article  MATH  Google Scholar 

  • Mifflin R (1977) Semismooth and semiconvex functions in constrained optimization. SIAM J Control Optim 15:957–972

    Article  MathSciNet  MATH  Google Scholar 

  • Moré JJ, Garbow BS, Hillstrom KH (1981) Testing unconstrained optimization software. ACM Trans Math Softw 7:17–41

    Article  MathSciNet  MATH  Google Scholar 

  • Pang JS (1997) Error bounds in mathematical programming. Math Program 79:299–332

    MathSciNet  MATH  Google Scholar 

  • Pang JS, Qi L (1993) Nonsmooth equations: motivation and algorithms. SIAM J Optim 3:443–465

    Article  MathSciNet  MATH  Google Scholar 

  • Qi L, Sun J (1993) A nonsmooth version of Newton’s method. Math Program 58(2):353–367

    Article  MathSciNet  MATH  Google Scholar 

  • Ruggiero MAG, Mart\(\acute{1}\)nez JM, Santos SA (1995) Solving nonsmooth equations by means of quasi-Newton methods with globalization. In: Recent advances in nonsmooth optimization. World Scientific, Singapore, pp 121–140

  • Yamashita N, Fukushima M (2001) On the rate of convergence of the Levenberg–Marquardt method. Computing 15:239–249

    MathSciNet  MATH  Google Scholar 

  • Zhang H, Hager WW (2004) A nonmonotone line search technique and its application to unconstrained optimization. SIAM J Optim 14(4):1043–1056

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Zhang X (2006) A smoothing Levenberg–Marquardt method for NCP. Appl Math Comput 178:212–228

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Fan.

Additional information

Communicated by José Mario Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, B. A nonmonotone Levenberg–Marquardt method for nonlinear complementarity problems under local error bound. Comp. Appl. Math. 36, 185–202 (2017). https://doi.org/10.1007/s40314-015-0222-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-015-0222-7

Keywords

Mathematics Subject Classification

Navigation