Log in

Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Nonlinear control methods have been researched with the objective of improving performance of control loop systems. Among such control methods, nonlinear model-based predictive control (NMPC) strategies present significant importance, mainly due to explicit performance optimization and constraint handling. NMPC depends on a representative nonlinear model of the process to be controlled and an adequate optimization method. This work focuses on these two aspects. Simulation tests with a wastewater treatment process model are presented, to evaluate the use of two optimization methods, differential evolution and bound optimization by quadratic approximation (BOBYQA), under different conditions. Experimental results using BOBYQA and a fully connected cascade artificial neural network in a pressure process are presented, showing a performance improvement comparing to a linear model predictive controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. The units were omitted for simplification.

References

  • Afonso, R. J. M., & Galvão, R. K. H. (2012). Infeasibility handling in constrained mpc. In T. Zheng (Ed.), Frontiers of Model Predictive Control (Chapter 3, pp. 47–65). InTech.

  • Allgöwer, F., Findeisen, R., & Nagy, Z. K. (2004). Nonlinear model predictive control: From theory to application. Journal of the Chinese Institute of Chemical Engineers, 35(3), 299–315.

    Google Scholar 

  • Åström, K. J., & Wittenmark, B. (2008). Adaptive Control. New York: Dover Publications.

    Google Scholar 

  • Camacho, E. F., & Bordons, C. (1999). Model predictive control. Londres: Spring-Verlag.

    Book  MATH  Google Scholar 

  • Chen, W., Li, X., & Chen, M. (2009). Suboptimal nonlinear model predictive control based on genetic algorithm. In 2009 Third international symposium on intelligent information technology application workshops (pp. 119–124).

  • Cheng, L., Liu, W., Hou, Z.-G., Yu, J., & Tan, M. (2015). Neural-network-based nonlinear model predictive control for piezoelectric actuators. IEEE Transactions on Industrial Electronics, 62(12), 7717–7727.

    Article  Google Scholar 

  • Dæhlen, J. S., Eikrem, G. O., & Johansen, T. A., (2014). Nonlinear model predictive control using trust-region derivative-free optimization. Journal of Process Control, 24, 1106–1120.

  • Festo-Didactic (2016). Mps® pa compact workstation with level, flow rate, pressure and temperature controlled systems. Available online at: http://www.festo-didactic.com. Accessed Feb 2016.

  • Findeisen, R., Imsland, L., Allgöwer, F., & Foss, B. A. (2003). State and output feedback nonlinear model predictive control: An overview. European Journal of Control, 9(2–3), 190–206.

    Article  MATH  Google Scholar 

  • Fossen, T. I., & Strand, J. P. (1999). Tutorial on nonlinear backstep**: Applications to ship control. Modeling, Identification and Control, 20(2), 83–134.

    Article  MathSciNet  Google Scholar 

  • Guerreiro, B. J., Silvestre, C., Cunha, R., & Pascoal, A. (2014). Trajectory tracking nonlinear model predictive control for autonomous surface craft. IEEE Transactions on Control Systems Technology, 22(6), 2160–2175.

    Article  Google Scholar 

  • Henson, M. A. (1998). Nonlinear model predictive control: Current status and future directions. Computers & Chemical Engineering, 23(2), 187–202.

    Article  Google Scholar 

  • Holenda, B., Domokos, E., Rédey, A., & Fazakas, J. (2008). Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. Computers and Chemical Engineering, 32, 1270–1278.

    Article  Google Scholar 

  • Hosen, M. A., Hussain, M. A., & Mjalli, F. S. (2011). Control of polystyrene batch reactors using neural network based model predictive control (NNMPC): An experimental investigation. Control Engineering Practice, 19(5), 454–467.

    Article  Google Scholar 

  • Huber, J., Kopecek, H., & Hofbaur, M. (2015). Nonlinear model predictive control of an internal combustion engine exposed to measured disturbances. Control Engineering Practice, 44, 78–88.

    Article  Google Scholar 

  • Johnson, S. G. (2015). Nlopt. Nonlinear optimization library.

  • Kishor, N., & Singh, S. P. (2007). Nonlinear predictive control for a NNARX hydro plant model. Neural Computing & Applications, 16(2), 101–108.

    Article  MathSciNet  Google Scholar 

  • Maciejowski, J. M. (2002). Predictive control with constraints. Harlow: Prentice Hall.

    MATH  Google Scholar 

  • Mayne, D. Q., Rawlings, J., Rao, C. V., & Scokaert, P. O. M. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36(6), 789–814.

    Article  MathSciNet  MATH  Google Scholar 

  • Negri, G. H., Cavalca, M. S. M., & Parpinelli, R. S. (2016). Model-based predictive control using differential evolution applied to a pressure system. IEEE Latin America Transactions, 14(1), 89–95.

    Article  Google Scholar 

  • Negri, G. H., Preuss, V. H. B., Cavalca, M. S. M., & de Oliveira, J. (2015). Differential evolution optimization applied in multivariable nonlinear model-based predictive control. Curitiba: In Latin American Congress on Computational Intelligence.

    Google Scholar 

  • Negri, L. H. (2014). Supernn. Available online at: https://bitbucket.org/lucashnegri/supernn. Accessed Jan 2016.

  • Nejjari, F., Dahhou, B., Benhammou, A., & Roux, G. (1999). Non-linear multivariable adaptive control of an activated sludge wastewater treatment process. International Journal of Adaptive Control and Signal Processing, 19(1), 347–365.

    Article  MATH  Google Scholar 

  • O’Brien, M., Mack, J., Lennox, B., Lovett, D., & Wall, A. (2011). Model predictive control of an activated sludge process: A case study. Control Engineering Practice, 19, 54–61.

    Article  Google Scholar 

  • Onnen, C., Babuska, R., Kaymak, U., Sousa, J., Verbruggen, H., & Isermann, R. (1997). Genetic algorithms for optimization in predictive control. Control Engineering Practice, 5(10), 1363–1372.

    Article  Google Scholar 

  • Patan, K. (2015). Neural network-based model predictive control: Fault tolerance and stability. IEEE Transactions on Control Systems Technology, 23(3), 1147–1155.

    Article  Google Scholar 

  • Powell, M. (2009). The BOBYQA algorithm for bound constrained optimization without derivatives. Technical Report DAMTP 2009/NA06, Department of Applied Mathematics and Theoretical Physics, University of Cambridge.

  • Qin, S. J., & Badgwell, T. A. (2003). A survey of industrial model predictive control technology. Control Engineering Practice, 11, 733–764.

    Article  Google Scholar 

  • Ribeiro, T. T., da Costa, A. L., & Conceição, A. G. S. (2015). Distributed constrained nmpc with infeasibility handling applied to formation control of nonholonomic vehicles. Journal of Control, Automation and Electric Systems, 26(6), 599–608.

    Article  Google Scholar 

  • Slotine, J.-J. E., & Li, W. (1991). Applied nonlinear control. Englewood Cliffs, NJ: Prentice Hall.

    MATH  Google Scholar 

  • Soloway, D., & Haley, P. J. (1997). Neural generalized predictive control: A newton-raphson implementation. National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia: Technical report.

    Google Scholar 

  • Sperb, E. C. L., Negri, L. H., Baasch, A. K. S., Polli, H. B., de Oliveira, J., & Nied, A. (2011). Sensorless control of pmsm using a new efficient neural network speed estimator. In International Conference on Power Engineering, Energy and Electrical Drives, Torremolinos (Málaga), Spain.

  • Storn, R., & Price, K. (1997). Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Wilamowski, B. M. (2009). Neural network architectures and learning algorithms. IEEE Industrial Electronics Magazine, 3(4), 56–63.

    Article  Google Scholar 

  • Yu, D.-L., & Gomm, J. B. (2003). Implementation of neural network predictive control to a multivariable chemical reactor. Control Engineering Practice, 11(11), 1315–1323.

    Article  Google Scholar 

  • Yu, D.-L., Yu, D.-W., & Gomm, J. B. (2006). Neural model adaptation and predictive control of a chemical process rig. IEEE Transactions on Control Systems Technology, 14(5), 828–840.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Coordenação de Aper-feiçoamento de Pessoal de Nível Superior (CAPES) for the financial support to G. H. Negri and Programa de Educação Tutorial (PET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel H. Negri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negri, G.H., Cavalca, M.S.M., de Oliveira, J. et al. Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks. J Control Autom Electr Syst 28, 623–634 (2017). https://doi.org/10.1007/s40313-017-0327-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-017-0327-x

Keywords

Navigation