Log in

Could Sodium/Glucose Co-Transporter-2 Inhibitors Have Antiarrhythmic Potential in Atrial Fibrillation? Literature Review and Future Considerations

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The global burden of atrial fibrillation (AF) is constantly increasing, necessitating novel and effective therapeutic options. Sodium glucose co-transporter 2 (SGLT2) inhibitors have been introduced in clinical practice as glucose-lowering medications. However, they have recently gained prominence for their potential to exert substantial cardiorenal protection and are being evaluated in large clinical trials including patients with type 2 diabetes and normoglycemic adults. In this review we present up-to-date available evidence in a pathophysiology-directed manner from cell to bedside. Preclinical and clinical data regarding a conceivable antiarrhythmic effect of SGLT2 inhibitors are beginning to accumulate. Herein we comprehensively present data that explore the potential pathophysiological link between SGLT2 inhibitors and AF. With regard to clinical data, no randomized controlled trials evaluating SGLT2 inhibitors effects on AF as a pre-specified endpoint are available. However, data from randomized controlled trial post-hoc analysis as well as observational studies point to a possible beneficial effect of SGLT2 inhibitors on AF. Meta-analyses addressing this question report inconsistent results and the real magnitude of AF prevention by SGLT2 inhibition remains unclear. Still, while (i) pathophysiologic mechanisms involved in AF might be favorably affected by SGLT2 inhibitors and (ii) emerging, yet inconsistent, clinical data imply that SGLT2 inhibitor-mediated cardiorenal protection could also exert antiarrhythmic effects, the argument of whether these novel drugs will reduce AF burden is unsettled and mandates appropriately designed and adequately sized randomized controlled studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lippi G, Sanchis-Gomar F, Cervellin G. Global epidemiology of atrial fibrillation: an increasing epidemic and public health challenge. Int J Stroke. 2020;0:1–5.

    Google Scholar 

  2. McRae C, Kapoor A, Kanda P, Hibbert B, Davis DR. Systematic review of biological therapies for atrial fibrillation. Hear Rhythm. 2019;16:1399–407. https://doi.org/10.1016/j.hrthm.2019.03.021.

    Article  Google Scholar 

  3. Gaita F, Scaglione M, Battaglia A, Matta M, Gallo C, Galatà M, et al. Very long-term outcome following transcatheter ablation of atrial fibrillation. Are results maintained after 10 years of follow up? Europace. 2018;20:443–50.

    Article  PubMed  Google Scholar 

  4. Kluger AY, Tecson KM, Lee AY, Lerma EV, Rangaswami J, Lepor NE, et al. Class effects of SGLT2 inhibitors on cardiorenal outcomes. Cardiovasc Diabetol. 2019;18:1–13. https://doi.org/10.1186/s12933-019-0903-4.

    Article  Google Scholar 

  5. Böhm M, Slawik J, Brueckmann M, Mattheus M, George JT, Ofstad AP, et al. Efficacy of empagliflozin on heart failure and renal outcomes in patients with atrial fibrillation: data from the EMPA-REG OUTCOME trial. Eur J Heart Fail. 2020;22:126–35.

    Article  PubMed  CAS  Google Scholar 

  6. Andrade J, Khairy P, Dobrev D, Nattel S. The clinical profile and pathophysiology of atrial fibrillation: Relationships among clinical features, epidemiology, and mechanisms. Circ Res. 2014;114:1453–68.

    Article  CAS  PubMed  Google Scholar 

  7. Ozcan C, Li Z, Kim G, Jeevanandam V, Uriel N. Molecular mechanism of the association between atrial fibrillation and heart failure includes energy metabolic dysregulation due to mitochondrial dysfunction: atrial fibrillation and heart failure. J Card Fail. 2019;25:911–20.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kang S, Verma S, Hassanabad AF, Teng G, Belke DD, Dundas JA, et al. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: novel translational clues to explain EMPA-REG OUTCOME results. Can J Cardiol. 2020;36:543–53. https://doi.org/10.1016/j.cjca.2019.08.033.

    Article  PubMed  Google Scholar 

  9. Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther. 2017;31:119–32.

    Article  PubMed  CAS  Google Scholar 

  10. Shao Q, Meng L, Lee S, Tse G, Gong M, Zhang Z, et al. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats. Cardiovasc Diabetol. 2019;18:1–14. https://doi.org/10.1186/s12933-019-0964-4.

    Article  CAS  Google Scholar 

  11. Lee H-C, Shiou Y-L, Jhuo S-J, Chang C-Y, Liu P-L, Jhuang W-J, et al. The sodium–glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc Diabetol. 2019;18:45. https://doi.org/10.1186/s12933-019-0849-6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Trum M, Riechel J, Lebek S, Pabel S, Sossalla ST, Hirt S, et al. Empagliflozin inhibits Na+/H+ exchanger activity in human atrial cardiomyocytes. ESC Heart Fail. 2020. https://doi.org/10.1002/ehf2.13024.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kant R, Hu Z, Malhotra JK, Krogh-Madsen T, Christini DJ, Heerdt PM, et al. NHE isoform switching and KChIP2 upregulation in aging porcine atria. PLoS One. 2013;8. https://doi.org/10.1371/journal.pone.0082951.

  14. Sato T, Aizawa Y, Yuasa S, Fujita S, Ikeda Y, Okabe M. The effect of dapagliflozin treatment on epicardial adipose tissue volume and P-wave indices: an ad-hoc analysis of the previous randomized clinical trial. J Atheroscler Thromb. 2020;27:1348–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moellmann J, Klinkhammer BM, Droste P, Kappel B, Haj-Yehia E, Maxeiner S, et al. Empagliflozin improves left ventricular diastolic function of db/db mice. Biochim Biophys Acta Mol Basis Dis. 2020;1866: 165807. https://doi.org/10.1016/j.bbadis.2020.165807.

    Article  CAS  PubMed  Google Scholar 

  16. Purohit A, Rokita AG, Guan X, Chen B, Koval OM, Voigt N, et al. Oxidized Ca2+/calmodulin-dependent protein kinase II triggers atrial fibrillation. Circulation. 2013;128:1748–57.

    Article  CAS  PubMed  Google Scholar 

  17. Yan J, Zhao W, Thomson JK, Gao X, DeMarco DM, Carrillo E, et al. Stress signaling JNK2 crosstalk with CaMKII underlies enhanced atrial arrhythmogenesis. Circ Res. 2018;122:821–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Finet JE, Wolfram JA, Anderson ME, Ai X, Donahue JK. Calcium/calmodulin-dependent protein kinase II causes atrial structural remodeling associated with atrial fibrillation and heart failure. Hear Rhythm. 2019;16:1080–8. https://doi.org/10.1016/j.hrthm.2019.01.013.

    Article  Google Scholar 

  19. Chu Y, Yang Q, Ren L, Yu S, Liu Z, Chen Y, et al. Late sodium current in atrial cardiomyocytes contributes to the induced and spontaneous atrial fibrillation in rabbit hearts. J Cardiovasc Pharmacol. 2020;76:437–44. https://doi.org/10.1097/FJC.0000000000000883.

    Article  CAS  PubMed  Google Scholar 

  20. Greer-Short A, Musa H, Alsina KM, Ni L, Word TA, Reynolds JO, et al. Calmodulin kinase II regulates atrial myocyte late sodium current, calcium handling, and atrial arrhythmia. Hear Rhythm. 2020;17:503–11.

    Article  Google Scholar 

  21. ** X, Jiang Y, Xue G, Yuan Y, Zhu H, Zhan L, et al. Increase of late sodium current contributes to enhanced susceptibility to atrial fibrillation in diabetic mice. Eur J Pharmacol. 2019;857:172444.

    Article  CAS  PubMed  Google Scholar 

  22. Philippaert K, Kalyaanamoorthy S, Fatehi M, Long W, Soni S, Byrne NJ, et al. Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin. Circulation. 2021;143:2188–204. https://doi.org/10.1161/CIRCULATIONAHA.121.053350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Poulet C, Wettwer E, Grunnet M, Jespersen T, Fabritz L, Matschke K, et al. Late sodium current in human atrial cardiomyocytes from patients in sinus rhythm and atrial fibrillation. PLoS ONE. 2015;10:e0131432. https://doi.org/10.1371/journal.pone.0131432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin Y, Chen C, Shih J, Cheng B, Chang C, Lin M, et al. Dapagliflozin improves cardiac hemodynamics and mitigates arrhythmogenesis in mitral regurgitation-induced myocardial dysfunction. J Am Heart Assoc. 2021. https://doi.org/10.1161/JAHA.120.019274.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nishinarita R, Niwano S, Niwano H, Nakamura H, Saito D, Sato T, et al. Canagliflozin suppresses atrial remodeling in a canine atrial fibrillation model. J Am Heart Assoc. 2021. https://doi.org/10.1161/JAHA.119.017483.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bode D, Semmler L, Wakula P, Hegemann N, Primessnig U, Beindorff N, et al. Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF. Cardiovasc Diabetol. 2021;20:7. https://doi.org/10.1186/s12933-020-01208-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nguyen T, Wen S, Gong M, Yuan X, Xu D, Wang C, et al. Dapagliflozin activates neurons in the central nervous system and regulates cardiovascular activity by inhibiting sglt-2 in mice. Diabetes Metab Syndr Obes Targets Ther. 2020;13:2781–99.

    Article  CAS  Google Scholar 

  28. Chiba Y, Yamada T, Tsukita S, Takahashi K, Munakata Y, Shirai Y, et al. Dapagliflozin, a sodium-glucose co-transporter 2 inhibitor, acutely reduces energy expenditure in BAT via neural signals in mice. PLoS ONE. 2016;11:1–13.

    Article  Google Scholar 

  29. Herat LY, Magno AL, Rudnicka C, Hricova J, Carnagarin R, Ward NC, et al. SGLT2 inhibitor-induced sympathoinhibition: a novel mechanism for cardiorenal protection. JACC Basic Transl Sci. 2020;5:169–79.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang N, Feng B, Ma X, Sun K, Xu G, Zhou Y. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovasc Diabetol. 2019;18:107. https://doi.org/10.1186/s12933-019-0914-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shimizu W, Kubota Y, Hoshika Y, Mozawa K, Tara S, Tokita Y, et al. Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: the EMBODY trial. Cardiovasc Diabetol. 2020;19:148. https://doi.org/10.1186/s12933-020-01127-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garg V, Verma S, Connelly KA, Yan AT, Sikand A, Garg A, et al. Does empagliflozin modulate the autonomic nervous system among individuals with type 2 diabetes and coronary artery disease? The EMPA-HEART CardioLink-6 Holter analysis. Metab Open. 2020;7:100039.

    Article  Google Scholar 

  33. Chakraborty P, Nattel S, Nanthakumar K. Linking cellular energy state to atrial fibrillation pathogenesis: potential role of adenosine monophosphate–activated protein kinase. Hear Rhythm. 2020;17:1398–404. https://doi.org/10.1016/j.hrthm.2020.03.025.

    Article  Google Scholar 

  34. Chen HX, Li MY, Jiang YY, Hou HT, Wang J, Liu XC, et al. Role of the PPAR pathway in atrial fibrillation associated with heart valve disease: transcriptomics and proteomics in human atrial tissue. Signal Transduct Target Ther. 2020;5:1–3.

    Google Scholar 

  35. Mizuno Y, Harada E, Nakagawa H, Morikawa Y, Shono M, Kugimiya F, et al. The diabetic heart utilizes ketone bodies as an energy source. Metabolism. 2017;77:65–72.

    Article  CAS  PubMed  Google Scholar 

  36. Ho KL, Zhang L, Wagg C, Al Batran R, Gopal K, Levasseur J, et al. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovasc Res. 2019;115:1606–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gormsen LC, Svart M, Thomsen HH, Søndergaard E, Vendelbo MH, Christensen N, et al. Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study. J Am Heart Assoc. 2017. https://doi.org/10.1161/JAHA.116.005066.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nielsen R, Møller N, Gormsen LC, Tolbod LP, Hansson NH, Sorensen J, et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation. 2019;139:2129–41. https://doi.org/10.1161/CIRCULATIONAHA.118.036459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65:1190–5. https://doi.org/10.2337/db15-1356.

    Article  CAS  PubMed  Google Scholar 

  40. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Ishikawa K, Watanabe S, Picatoste B, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol. 2019;73:1931–44.

    Article  CAS  PubMed  Google Scholar 

  41. Kappel BA, Lehrke M, Schütt K, Artati A, Adamski J, Lebherz C, et al. Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation. 2017;136:969–72. https://doi.org/10.1161/CIRCULATIONAHA.117.029166.

    Article  CAS  PubMed  Google Scholar 

  42. Packer M. Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: a novel conceptual framework. Diabetes Obes Metab. 2020;22:734–42.

    Article  CAS  PubMed  Google Scholar 

  43. Koyani CN, Plastira I, Sourij H, Hallström S, Schmidt A, Rainer PP, et al. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol Res. 2020;158. https://doi.org/10.1016/j.phrs.2020.104870.

  44. Chen Y, Qiao X, Zhang L, Li X, Liu Q. Apelin-13 regulates angiotensin ii-induced Cx43 downregulation and autophagy via the AMPK/mTOR signaling pathway in HL-1 cells. Physiol Res. 2020;69:813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ren C, Sun K, Zhang Y, Hu Y, Hu B, Zhao J, et al. Sodium-glucose cotransporter-2 inhibitor empagliflozin ameliorates sunitinib-induced cardiac dysfunction via regulation of AMPK–mTOR signaling pathway-mediated autophagy. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.664181/full.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu X, Xu C, Xu L, Li X, Sun H, Xue M, et al. Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway. Metabolism. 2020;111:154334.

    Article  CAS  PubMed  Google Scholar 

  47. Mancini SJ, Boyd D, Katwan OJ, Strembitska A, Almabrouk TA, Kennedy S, et al. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Sci Rep. 2018;8:1–14. https://doi.org/10.1038/s41598-018-23420-4.

    Article  CAS  Google Scholar 

  48. Jaikumkao K, Promsan S, Thongnak L, Swe MT, Tapanya M, Htun KT, et al. Dapagliflozin ameliorates pancreatic injury and activates kidney autophagy by modulating the AMPK/mTOR signaling pathway in obese rats. J Cell Physiol. 2021. https://doi.org/10.1002/jcp.30316.

    Article  PubMed  Google Scholar 

  49. Lee J-Y, Lee M, Lee JY, Bae J, Shin E, Lee Y, et al. Ipragliflozin, an SGLT2 inhibitor, ameliorates high-fat diet-induced metabolic changes by upregulating energy expenditure through activation of the AMPK/SIRT1 pathway. Diabetes Metab J. 2021. https://doi.org/10.4093/dmj.2020.0187.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Meng Z, Liu X, Li T, Fang T, Cheng Y, Han L, et al. The SGLT2 inhibitor empagliflozin negatively regulates IL-17/IL-23 axis-mediated inflammatory responses in T2DM with NAFLD via the AMPK/mTOR/autophagy pathway. Int Immunopharmacol. 2021;94:107492.

    Article  CAS  PubMed  Google Scholar 

  51. Uthman L, Kuschma M, Römer G, Boomsma M, Kessler J, Hermanides J, et al. Novel anti-inflammatory effects of canagliflozin involving hexokinase II in lipopolysaccharide-stimulated human coronary artery endothelial cells. Cardiovasc Drugs Ther. 2020. https://doi.org/10.1007/s10557-020-07083-w.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, et al. The Na + /glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65:2784–94. https://doi.org/10.2337/db16-0058.

    Article  CAS  PubMed  Google Scholar 

  53. Tomita I, Kume S, Sugahara S, Osawa N, Yamahara K, Yasuda-Yamahara M, et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab. 2020;32:404-419.e6.

    Article  CAS  PubMed  Google Scholar 

  54. Bai F, Liu Y, Tu T, Li B, **ao Y, Ma Y, et al. Metformin regulates lipid metabolism in a canine model of atrial fibrillation through AMPK/PPAR-α/VLCAD pathway. Lipids Health Dis. 2019;18:1–9.

    Article  Google Scholar 

  55. Zhao J, Liu GZ, Hou TT, Yuan Y, Hang PZ, Zhao JJ, et al. Fenofibrate inhibits atrial metabolic remodelling in atrial fibrillation through PPAR-α/sirtuin 1/PGC-1α pathway. Br J Pharmacol. 2016;173:1095–109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Deng X-M, Luo X-J, Chen X-P, He S, Li L-X, Wan L-Y, et al. Expression of peroxisome proliferator-activated receptor alpha and beta in peripheral blood mononuclear cells of non-vavular hypertensive atrial fibrillation patients. Sichuan Da Xue Xue Bao Yi Xue Ban. 2013;44:383–7.

    CAS  PubMed  Google Scholar 

  57. Seidl MD, Stein J, Hamer S, Pluteanu F, Scholz B, Wardelmann E, et al. Characterization of the genetic program linked to the development of atrial fibrillation in CREM-IbΔC-X Mice. Circ Arrhythmia Electrophysiol. 2017;10:1–13.

    Article  CAS  Google Scholar 

  58. Wei D, Liao L, Wang H, Zhang W, Wang T, Xu Z. Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro. Life Sci. 2020;247: 117414. https://doi.org/10.1016/j.lfs.2020.117414.

    Article  CAS  PubMed  Google Scholar 

  59. Couselo-Seijas M, Agra-Bermejo RM, Fernández AL, Martínez-Cereijo JM, Sierra J, Soto-Pérez M, et al. High released lactate by epicardial fat from coronary artery disease patients is reduced by dapagliflozin treatment. Atherosclerosis. 2020;292:60–9.

    Article  CAS  PubMed  Google Scholar 

  60. Luongo TS, Lambert JP, Gross P, Nwokedi M, Lombardi AA, Shanmughapriya S, et al. The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature. 2017;545:93–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kohlhaas M, Maack C. Adverse bioenergetic consequences of Na + -Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes. Circulation. 2010;122:2273–80. https://doi.org/10.1161/CIRCULATIONAHA.110.968057.

    Article  CAS  PubMed  Google Scholar 

  62. Liu T, O’Rourke B. Enhancing mitochondrial Ca 2+ uptake in myocytes from failing hearts restores energy supply and demand matching. Circ Res. 2008;103:279–88. https://doi.org/10.1161/CIRCRESAHA.108.175919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Olgar Y, Tuncay E, Degirmenci S, Billur D, Dhingra R, Kirshenbaum L, et al. Ageing-associated increase in SGLT2 disrupts mitochondrial/sarcoplasmic reticulum Ca 2+ homeostasis and promotes cardiac dysfunction. J Cell Mol Med. 2020;24:8567–78. https://doi.org/10.1111/jcmm.15483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Slodzinski MK, Aon MA, O’Rourke B. Glutathione oxidation as a trigger of mitochondrial depolarization and oscillation in intact hearts. J Mol Cell Cardiol. 2008;45:650–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ryu S-Y, Lee S-H, Ho W-K. Generation of metabolic oscillations by mitoKATP and ATP synthase during simulated ischemia in ventricular myocytes. J Mol Cell Cardiol. 2005;39:874–81.

    Article  CAS  PubMed  Google Scholar 

  66. Lee T-I, Chen Y-C, Lin Y-K, Chung C-C, Lu Y-Y, Kao Y-H, et al. Empagliflozin attenuates myocardial sodium and calcium dysregulation and reverses cardiac remodeling in streptozotocin-induced diabetic rats. Int J Mol Sci. 2019;20:1680.

    Article  CAS  PubMed Central  Google Scholar 

  67. Juni RP, Kuster DWD, Goebel M, Helmes M, Musters RJP, van der Velden J, et al. Cardiac microvascular endothelial enhancement of cardiomyocyte function is impaired by inflammation and restored by empagliflozin. JACC Basic to Transl Sci. 2019;4:575–91.

    Article  Google Scholar 

  68. Pirklbauer M, Sallaberger S, Staudinger P, Corazza U, Leierer J, Mayer G, et al. Empagliflozin inhibits IL-1β-mediated inflammatory response in human proximal tubular cells. Int J Mol Sci. 2021;22:5089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nakatsu Y, Kokubo H, Bumdelger B, Yoshizumi M, Yamamotoya T, Matsunaga Y, et al. The SGLT2 inhibitor luseogliflozin rapidly normalizes aortic mRNA levels of inflammation-related but not lipid-metabolism-related genes and suppresses atherosclerosis in diabetic ApoE KO mice. Int J Mol Sci. 2017;18:1704.

    Article  PubMed Central  CAS  Google Scholar 

  70. Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, et al. Effects of sodium-glucose cotransporter 2 selective inhibitor ipragliflozin on hyperglycaemia, oxidative stress, inflammation and liver injury in streptozotocin-induced type 1 diabetic rats. J Pharm Pharmacol. 2014;66:975–87.

    Article  CAS  PubMed  Google Scholar 

  71. Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, et al. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. Eur J Pharmacol. 2013;715:246–55.

    Article  CAS  PubMed  Google Scholar 

  72. Heerspink HJL, Perco P, Mulder S, Leierer J, Hansen MK, Heinzel A, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia. 2019;62:1154–66. https://doi.org/10.1007/s00125-019-4859-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dror E, Dalmas E, Meier DT, Wueest S, Thévenet J, Thienel C, et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol. 2017;18:283–92.

    Article  CAS  PubMed  Google Scholar 

  74. Xu C, Wang W, Zhong J, Lei F, Xu N, Zhang Y, et al. Canagliflozin exerts anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells. Biochem Pharmacol. 2018;152:45–59.

    Article  CAS  PubMed  Google Scholar 

  75. Garvey WT, Van Gaal L, Leiter LA, Vijapurkar U, List J, Cuddihy R, et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism. 2018;85:32–7.

    Article  CAS  PubMed  Google Scholar 

  76. Iannantuoni F, de Marañon A, Diaz-Morales N, Falcon R, Bañuls C, Abad-Jimenez Z, et al. The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes. J Clin Med. 2019;8:1814.

    Article  CAS  PubMed Central  Google Scholar 

  77. Lee DM, Battson ML, Jarrell DK, Hou S, Ecton KE, Weir TL, et al. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc Diabetol. 2018;17:62. https://doi.org/10.1186/s12933-018-0708-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sposito AC, Breder I, Soares AAS, Kimura-Medorima ST, Munhoz DB, Cintra RMR, et al. Dapagliflozin effect on endothelial dysfunction in diabetic patients with atherosclerotic disease: a randomized active-controlled trial. Cardiovasc Diabetol. 2021;20:74. https://doi.org/10.1186/s12933-021-01264-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Uthman L, Homayr A, Juni RP, Spin EL, Kerindongo R, Boomsma M, et al. Empagliflozin and dapagliflozin reduce ROS generation and restore no bioavailability in tumor necrosis factor α-stimulated human coronary arterial endothelial cells. Cell Physiol Biochem. 2019;53:865–86.

    Article  CAS  PubMed  Google Scholar 

  80. Kousathana F, Georgitsi M, Lambadiari V, Giamarellos-Bourboulis EJ, Dimitriadis G, Mouktaroudi M. Defective production of interleukin-1 beta in patients with type 2 diabetes mellitus: restoration by proper glycemic control. Cytokine England. 2017;90:177–84.

    Article  CAS  Google Scholar 

  81. Li N, Brundel BJJM. Inflammasomes and proteostasis novel molecular mechanisms associated with atrial fibrillation. Circ Res. 2020;73–90. https://doi.org/10.1161/CIRCRESAHA.119.316364.

  82. Heijman J, Muna AP, Veleva T, Molina CE, Sutanto H, Tekook M, et al. Atrial myocyte NLRP3/CaMKII nexus forms a substrate for postoperative atrial fibrillation. Circ Res. 2020;1036–55. https://doi.org/10.1161/CIRCRESAHA.120.316710.

  83. Yao C, Veleva T, Al E. Enhanced cardiomyocyte NLRP3 inflammasome signaling. Circulation. 2018. https://doi.org/10.1161/CIRCULATIONAHA.118.035202.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sukhanov S, Higashi Y, Yoshida T, Mummidi S, Aroor AR, Jeffrey Russell J, et al. The SGLT2 inhibitor Empagliflozin attenuates interleukin-17A-induced human aortic smooth muscle cell proliferation and migration by targeting TRAF3IP2/ROS/NLRP3/Caspase-1-dependent IL-1β and IL-18 secretion. Cell Signal. 2021;77: 109825. https://doi.org/10.1016/j.cellsig.2020.109825.

    Article  CAS  PubMed  Google Scholar 

  85. Kim SR, Lee SG, Kim SH, Kim JH, Choi E, Cho W, et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun. 2020;11:1–11. https://doi.org/10.1038/s41467-020-15983-6.

    Article  CAS  Google Scholar 

  86. Byrne NJ, Matsumura N, Maayah ZH, Ferdaoussi M, Takahara S, Darwesh AM, et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) inflammasome activation in heart failure. Circ Heart Fail. 2020. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006277.

    Article  PubMed  Google Scholar 

  87. Birnbaum Y, Bajaj M, Yang H-C, Ye Y. Combined SGLT2 and DPP4 inhibition reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic nephropathy in mice with type 2 diabetes. Cardiovasc Drugs Ther. 2018;32:135–45. https://doi.org/10.1007/s10557-018-6778-x.

    Article  CAS  PubMed  Google Scholar 

  88. Leng W, Ouyang X, Lei X, Wu M, Chen L, Wu Q, et al. The SGLT-2 inhibitor dapagliflozin has a therapeutic effect on atherosclerosis in diabetic ApoE −/− mice. Mediat Inflamm. 2016;2016:1–13.

    Article  CAS  Google Scholar 

  89. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61:2108–17.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang J, Zheng R, Li H, Guo J. Serum uric acid and incident atrial fibrillation: a systematic review and dose–response meta-analysis. Clin Exp Pharmacol Physiol. 2020;47:1774–82.

    Article  CAS  PubMed  Google Scholar 

  91. Letsas KP, Korantzopoulos P, Filippatos GS, Mihas CC, Markou V, Gavrielatos G, et al. Uric acid elevation in atrial fibrillation. Hellenic J Cardiol. 2010;51:209–13.

    PubMed  Google Scholar 

  92. Li S, Cheng J, Cui L, Gurol ME, Bhatt DL, Fonarow GC, et al. Cohort study of repeated measurements of serum urate and risk of incident atrial fibrillation. J Am Heart Assoc. 2019;8:e012020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zelniker TA, Braunwald E. Cardiac and renal effects of sodium-glucose co-transporter 2 inhibitors in diabetes: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72:1845–55.

    Article  CAS  PubMed  Google Scholar 

  94. Wachtell K. Atrial fibrillation is target organ damage caused by an impaired haemodynamic state. Heart. 2018;104:1234–5.

    Article  PubMed  Google Scholar 

  95. David Mazer C, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, et al. Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation. 2020;704–7. https://doi.org/10.1161/CIRCULATIONAHA.119.044235.

  96. Zelniker TA, Bonaca MP, Furtado RHM, Mosenzon O, Kuder JF, Murphy SA, et al. Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabetes mellitus: Insights from the DECLARE-TIMI 58 Trial. Circulation. 2020;1227–34. https://doi.org/10.1161/CIRCULATIONAHA.119.044183.

  97. Zhou Z, Jardine MJ, Li Q, Neuen BL, Cannon CP, de Zeeuw D, et al. Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease. Stroke. 2021;52:1545–56. https://doi.org/10.1161/STROKEAHA.120.031623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ling AWC, Chan CC, Chen SW, Kao YW, Huang CY, Chan YH, et al. The risk of new-onset atrial fibrillation in patients with type 2 diabetes mellitus treated with sodium glucose cotransporter 2 inhibitors versus dipeptidyl peptidase-4 inhibitors. Cardiovasc Diabetol. 2020;19:1–12. https://doi.org/10.1186/s12933-020-01162-w.

    Article  CAS  Google Scholar 

  99. Birkeland KI, Jørgensen ME, Carstensen B, Persson F, Gulseth HL, Thuresson M, et al. Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic): a multinational observational analysis. Lancet Diabetes Endocrinol. 2017;5:709–17.

    Article  CAS  PubMed  Google Scholar 

  100. Norhammar A, Bodegård J, Nyström T, Thuresson M, Nathanson D, Eriksson JW. Dapagliflozin and cardiovascular mortality and disease outcomes in a population with type 2 diabetes similar to that of the DECLARE-TIMI 58 trial: a nationwide observational study. Diabetes, Obes Metab. 2019;21:1136–45.

    Article  CAS  Google Scholar 

  101. Shen NN, Zhang C, Li Z, Kong LC, Wang XH, Gu ZC, et al. MicroRNA expression signatures of atrial fibrillation: the critical systematic review and bioinformatics analysis. Exp Biol Med. 2020;245:42–53.

    Article  CAS  Google Scholar 

  102. Huang RS, Gamazon ER, Ziliak D, Wen Y, Im HK, Zhang W, et al. Population differences in microRNA expression and biological implications. RNA Biol. 2011;8:692–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen HY, Huang JY, Siao WZ, Jong GP. The association between SGLT2 inhibitors and new-onset arrhythmias: a nationwide population-based longitudinal cohort study. Cardiovasc Diabetol. 2020;19:1–8. https://doi.org/10.1186/s12933-020-01048-x.

    Article  CAS  Google Scholar 

  104. Bonora BM, Raschi E, Avogaro A, Fadini GP. SGLT-2 inhibitors and atrial fibrillation in the Food and Drug Administration adverse event reporting system. Cardiovasc Diabetol. 2021;20:39. https://doi.org/10.1186/s12933-021-01243-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Usman MS, Siddiqi TJ, Memon MM, Khan MS, Rawasia WF, Talha Ayub M, et al. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: a systematic review and meta-analysis. Eur J Prev Cardiol. 2018;25:495–502. https://doi.org/10.1177/2047487318755531.

    Article  PubMed  Google Scholar 

  106. Li WJ, Chen XQ, Xu LL, Li YQ, Luo BH. SGLT2 inhibitors and atrial fibrillation in type 2 diabetes: a systematic review with meta-analysis of 16 randomized controlled trials. Cardiovasc Diabetol. 2020;19:1–14. https://doi.org/10.1186/s12933-020-01105-5.

    Article  CAS  Google Scholar 

  107. Okunrintemi V, Mishriky BM, Powell JR, Cummings DM. Sodium-glucose co-transporter-2 inhibitors and atrial fibrillation in the cardiovascular and renal outcome trials. Diabetes Obes Metab. 2020. https://doi.org/10.1111/dom.14211.

    Article  PubMed  Google Scholar 

  108. Fernandes GC, Fernandes A, Cardoso R, Penalver J, Knijnik L, Mitrani RD, et al. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: a meta-analysis of 34 randomized controlled trials. Heart Rhythm. 2021. https://doi.org/10.1016/j.hrthm.2021.03.028.

    Article  PubMed  Google Scholar 

  109. Li D, Liu Y, Hidru TH, Yang X, Wang Y, Chen C, et al. Protective effects of sodium-glucose transporter 2 inhibitors on atrial fibrillation and atrial flutter: a systematic review and meta-analysis of randomized placebo-controlled trials. Front Endocrinol (Lausanne). 2021. https://doi.org/10.3389/fendo.2021.619586/full.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Li H-L, Lip G-YH, Feng Q, Fei Y, Tse Y-K, Wu M, et al. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and cardiac arrhythmias: a systematic review and meta-analysis. Cardiovasc Diabetol. 2021;20:100. https://doi.org/10.1186/s12933-021-01293-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, et al. Correction to: 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of diabetes (EASD) (Diabetologia, (2020), 63, 2, (221-228), 10.1. Diabetologia. 2020;63:1667. https://doi.org/10.1007/s00125-019-05039-w.

  112. Gueyffier F, Cucherat M. The limitations of observation studies for decision making regarding drugs efficacy and safety. Therapie. 2019;74:181–5.

    Article  PubMed  Google Scholar 

  113. Lindenfeld J. Patient-reported outcomes with empagliflozin in the EMPERIAL trials. Presented at European Society of Cardiology’s HFA Discoveries program. Eur Soc Cardiol HFA Discov 2020. 2020. Retrieved from https://esc365.escardio.org/Congress/223722-patient-reported-outcomes-with-empagliflozin-in-the-emperial-trials.

  114. Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Erondu N, Shaw W, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6:691–704. https://doi.org/10.1016/S2213-8587(18)30141-4.

    Article  CAS  PubMed  Google Scholar 

  115. Wilding JPH, Charpentier G, Hollander P, González-Gálvez G, Mathieu C, Vercruysse F, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract. 2013;67:1267–82.

    Article  CAS  PubMed  Google Scholar 

  116. Yale JF, Bakris G, Cariou B, Nieto J, David-Neto E, Yue D, et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes Metab. 2014;16:1016–27.

    Article  CAS  PubMed  Google Scholar 

  117. Bode B, Stenlöf K, Harris S, Sullivan D, Fung A, Usiskin K, et al. Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55–80 years with type 2 diabetes. Diabetes Obes Metab. 2015;17:294–303.

    Article  CAS  PubMed  Google Scholar 

  118. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306.

    Article  CAS  PubMed  Google Scholar 

  119. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.

    Article  CAS  PubMed  Google Scholar 

  120. Rosenstock J, Jelaska A, Zeller C, Kim G, Broedl UC, Woerle HJ. Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: a 78-week randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2015;17:936–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kovacs CS, Seshiah V, Swallow R, Jones R, Rattunde H, Woerle HJ, et al. Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes Metab. 2014;16:147–58. https://doi.org/10.1111/dom.12188.

    Article  CAS  PubMed  Google Scholar 

  122. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2:369–84. https://doi.org/10.1016/S2213-8587(13)70208-0.

    Article  CAS  PubMed  Google Scholar 

  123. Søfteland E, Meier JJ, Vangen B, Toorawa R, Maldonado-Lutomirsky M, Broedl UC. Empagliflozin as add-on therapy in patients with type 2 diabetes inadequately controlled with linagliptin and metformin: a 24-week randomized, double-blind, parallel-group trial. Diabetes Care. 2017;40:201–9.

    Article  PubMed  CAS  Google Scholar 

  124. Bailey CJ, Morales Villegas EC, Woo V, Tang W, Ptaszynska A, List JF. Efficacy and safety of dapagliflozin monotherapy in people with type 2 diabetes: a randomized double-blind placebo-controlled 102-week trial. Diabet Med. 2015;32:531–41.

    Article  CAS  PubMed  Google Scholar 

  125. Leiter LA, Cefalu WT, De Bruin TWA, Gause-Nilsson I, Sugg J, Parikh SJ. Dapagliflozin added to usual care in individuals with type 2 diabetes mellitus with preexisting cardiovascular disease: a 24-week, multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension. J Am Geriatr Soc. 2014;62:1252–62.

    Article  PubMed  Google Scholar 

  126. Wilding JPH, Woo V, Soler NG, Pahor AP, Sugg J, Rohwedder K, et al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin a randomized trial. Ann Intern Med. 2012;156:405–15.

    Article  PubMed  Google Scholar 

  127. Bailey CJ, Gross JL, Hennicken D, Iqbal N, Mansfield TA, List JF. Dapagliflozin add-on to metformin in type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled 102-week trial. BMC Med. 2013;11:1–10.

    CAS  Google Scholar 

  128. Mathieu C, Ranetti AE, Li D, Ekholm E, Cook W, Hirshberg B, et al. Randomized, double-blind, phase 3 trial of triple therapy with dapagliflozin add-on to saxagliptin plus metformin in type 2 diabetes. Diabetes Care. 2015;38:2009–17.

    Article  CAS  PubMed  Google Scholar 

  129. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57.

    Article  CAS  PubMed  Google Scholar 

  130. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28. https://doi.org/10.1056/NEJMoa1504720.

    Article  CAS  PubMed  Google Scholar 

  131. Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383:1425–35.

    Article  CAS  PubMed  Google Scholar 

  132. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008.

    Article  CAS  PubMed  Google Scholar 

  133. Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou F-F, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyridon G. Deftereos.

Ethics declarations

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Conflict of interest

Dimitrios A. Vrachatis, Konstantinos A. Papathanasiou, Konstantinos E. Iliodromitis, Sotiria G. Giotaki, Charalampos Kossyvakis, Konstantinos Raisakis, Andreas Kaoukis, Vaia Lambadiari, Dimitrios Avramides, Bernhard Reimers, Giulio G. Stefanini, Michael Cleman, Georgios Giannopoulos, Alexandra Lansky, and Spyridon G. Deftereos declare no potential conflicts of interest that might be relevant to this work.

Ethics approval, Consent to participate, Consent for publication, Availability of data and materials and Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrachatis, D.A., Papathanasiou, K.A., Iliodromitis, K.E. et al. Could Sodium/Glucose Co-Transporter-2 Inhibitors Have Antiarrhythmic Potential in Atrial Fibrillation? Literature Review and Future Considerations. Drugs 81, 1381–1395 (2021). https://doi.org/10.1007/s40265-021-01565-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-021-01565-3

Navigation