Log in

Hierarchical Self-assembly of Atomically Precise Au Nanoclusters with Molecular Rotor-based Ligands

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The hierarchical assemblies of precise nanoparticles (NPs) have created materials with emergent properties and functionalities. However, the complex assemblies remain unclear at a precise scale. Here, we show the hierarchical self-assembly of atomically precise gold nanoclusters (Au NCs) with molecular rotor-based ligands (MRL), featuring a double-layer surface. Compared to two other types of monolayer-protected (MLP) Au NCs, the significantly reduced surface density for MRL Au NCs profoundly influences their assembly behavior within the lattice. Furthermore, the long length of rotor-based ligands and the rotational freedom of the phenyl-rings of rotor-based ligands also facilitate the assembly of NCs. Our works elucidate the hierarchical assembly on a precise scale, suggesting that the rotor-based ligand’s strategy offers promising potential for designing well-defined and more complex structures in supercrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miszta K., De Graaf J., Bertoni G., Dorfs D., Brescia R., Marras S., Ceseracciu L., Cingolani R., Van Roij R., Dijkstra M., Manna L., Nat. Mater., 2011, 10, 872.

    Article  CAS  PubMed  Google Scholar 

  2. Kumar S. K., Kumaraswamy G., Prasad B. L. V., Bandyopadhyaya R., Granick S., Gang O., Manoharan V. N., Frenkel D., Kotov N. A., Curr. Sci., 2017, 112, 1635.

    Article  Google Scholar 

  3. Kagan C. R., Lifshitz E., Sargent E. H., Talapin D. V., Science, 2016, 353, aac5523.

    Article  PubMed  Google Scholar 

  4. Glotzer S. C., Solomon M. J., Nat. Mater., 2007, 6, 557.

    Article  PubMed  Google Scholar 

  5. Damasceno, P. F., Engel M., Glotzer S. C., Science, 2012, 337, 453.

    Article  CAS  PubMed  Google Scholar 

  6. Ye X. C., Chen J., Engel M., Millan J. A., Li W. B., Qi L., **ng G. Z., Collins J. E., Kagan C. R., Li J., Glotzer S. C., Murray C. B., Nat. Chem., 2013, 5, 466.

    Article  CAS  PubMed  Google Scholar 

  7. Walker D. A., Leitsch E. K., Nap R. J., Szleifer I., Grzybowski B. A., Nat. Nanotechnol., 2013, 8, 676.

    Article  CAS  PubMed  Google Scholar 

  8. Gröschel A. H., Walther A., Löbling T. I., Schacher F. H., Schmalz H., Müller A. H. E., Nature, 2013, 503, 247.

    Article  PubMed  Google Scholar 

  9. Batista C. A. S., Larson R. G. Kotov N. A., Science, 2015, 350, 138, 1242477.

    Article  PubMed  Google Scholar 

  10. Wang X. J., Yin B., Jiang L. R., Yang C., Liu Y., Zou G., Chen S., Zhu M. Z., Science, 2023, 381, 784.

    Article  CAS  PubMed  Google Scholar 

  11. Chakraborty P., Nag A., Chakraborty A., Pradeep T., Acc. Chem. Res., 2019, 52, 2.

    Article  CAS  PubMed  Google Scholar 

  12. Jena P., Sun Q., Chem. Rev., 2018, 118, 5755.

    Article  CAS  PubMed  Google Scholar 

  13. Li Q., Russell J. C., Luo T. Y., Roy X., Rosi N. L., Zhu Y., ** R. C., Nat. Commun., 2018, 9,3871.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zeng, C. J., Chen Y. X., Kirschbaum K., Lambright K. J., ** R. C., Science, 2016, 354, 1580.

    Article  CAS  PubMed  Google Scholar 

  15. Li Y. W., Zhou M., Song Y. B., Higaki T., Wang H., ** R. C., Nature, 2021, 594, 380.

    Article  CAS  PubMed  Google Scholar 

  16. Yan J. Z., Teo B. K., Zheng N. F., Acc. Chem. Res., 2018, 51, 3084.

    Article  CAS  PubMed  Google Scholar 

  17. Mckenzie L. C., Zaikova T. O., Hutchison J. E., J. Am. Chem. Soc., 2014, 136, 13426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li H., Song F., Zhu D. S., Song Y. B., Zhou C. J., Ke F., Lu L., Kang X., Zhu M. Z., J. Am. Chem. Soc., 2022, 144, 4845.

    Article  CAS  PubMed  Google Scholar 

  19. Lei Z., Wan X. K., Yuan S. F., Guan Z. J., Wang Q. M., Acc. Chem. Res., 2018, 51, 2465.

    Article  CAS  PubMed  Google Scholar 

  20. Konishi K., Iwasaki M., Shichibu Y., Acc. Chem. Res., 2018, 51, 3125.

    Article  CAS  PubMed  Google Scholar 

  21. Hossain S., Niihori Y., Nair L. V., Kumar B., Kurashige W., Negishi Y., Acc. Chem. Res., 2018, 51, 3114.

    Article  CAS  PubMed  Google Scholar 

  22. Higaki T., Li Q., Zhou M., Zhao S., Li Y. W., Li S. T., ** R. C., Acc. Chem. Res., 2018, 51, 2764.

    Article  CAS  PubMed  Google Scholar 

  23. Gan, Z. B., **a N., Woo Z. K., Acc. Chem. Res., 2018, 51, 2774.

    Article  CAS  PubMed  Google Scholar 

  24. Tang Q., Hu G. X., Fung V., Jiang D. E., Acc. Chem. Res., 2018, 51, 2793.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y. F., Wang Y., Breed D. R., Manoharan V. N., Feng L., Hollingsworth A. D., Weck M., Pine D. J., Nature, 2012, 491, 51.

    Article  CAS  PubMed  Google Scholar 

  26. Chen J., Gu P. L., Ran G. L., Zhang Y., Li M. Q., Chen B., Lu H., Han Y. Z., Zhang W. K., Tang Z. C., Yan Q. L., Sun R., Fu X. B., Chen G. R., Shi Z. W., Wang S. Y., Liu X. G., Li J., Wang L. H., Zhu Y., Shen J. L., Tang B. Z., Fan C. H., Nat. Mater., 2024, 23, 271.

    Article  CAS  PubMed  Google Scholar 

  27. Chen J., Zhang Q. F., Williard P. G., Wang L. S., Inorg. Chem., 2014, 53, 3932.

    Article  CAS  PubMed  Google Scholar 

  28. Zeng C. J., Liu C., Chen Y. X., Rosi N. L., ** R. C., J. Am. Chem. Soc., 2014, 136, 11922.

    Article  CAS  PubMed  Google Scholar 

  29. Harper E. S., Van Anders G., Glotzer S. C., Proc. Natl. Acad. Sci., 2019, 116, 16703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van Anders G., Ahmed N. K., Smith R., Engel M., Glotzer S. C., ACS Nano., 2014, 8, 931.

    Article  CAS  PubMed  Google Scholar 

  31. Abu Bakar M., Sugiuchi M., Iwasaki M., Shichibu Y., Konishi K., Nat. Commun., 2017, 8, 567.

    Article  Google Scholar 

  32. Spackman M. A., Jayatilaka D., CrystEngComm, 2009, 11, 19.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2023YFC3404200), the National Natural Science Foundation of China (Nos. 21974147, 22325406), the 2022 Shanghai “Science and Technology Innovation Action Plan” Fundamental Research Project, China (No. 22JC1401203), and the Science Foundation of the Shanghai Municipal Science and Technology Commission, China (No. 21dz2210100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **g Chen or Chunhai Fan.

Ethics declarations

FAN Chunhai is an editorial board member for Chemical Research in Chinese Universities and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Lu, H., Li, J. et al. Hierarchical Self-assembly of Atomically Precise Au Nanoclusters with Molecular Rotor-based Ligands. Chem. Res. Chin. Univ. (2024). https://doi.org/10.1007/s40242-024-4104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40242-024-4104-7

Keywords

Navigation